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This chapter treats error-correcting codes and their weight enumerator
as the center of several closely related topics such as arrangements of
hyperplanes, graph theory, matroids, posets and geometric lattices and
their characteristic, chromatic, Tutte, Möbius and coboundary polyno-
mial, respectively. Their interrelations and many examples and coun-
terexamples are given. It is concluded with a section with references to
the literature for further reading and open questions.
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1.1. Introduction

A lot of mathematical objects are closely related to each other. While study-

ing certain aspects of a mathematical object, one tries to find a way to

“view” the object in a way that is most suitable for a specific problem. Or

in other words, one tries to find the best way to model the problem. Many

related fields of mathematics have evolved from one another this way. In

practice, it is very useful to be able to transform your problem into other

terminology: it gives a lot more available knowledge that can be helpful to

solve a problem.

In this chapter we give a broad overview of closely related fields, starting

from the weight enumerator of an error-correcting code. We explain the

importance of this polynomial in coding theory. From various methods of

determining the weight enumerator, we naturally run into other ways to
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view an error-correcting code. We will introduce and link the following

mathematical objects:

• linear codes and their weight enumerator (§1.2, §1.3, §1.5);

• arrangements and their characteristic polynomial (§1.4, §1.8);

• graphs and their chromatic polynomial (§1.6.2)

• matroids and their Tutte polynomial (§1.6);

• posets and their Möbius function (§1.7);

• geometric lattices and their coboundary polynomial (§1.7, §1.8).

A nice example to show the power of these connections are the MacWilliams

identities, that relate the polynomials associated to an object and its dual.

This will be treated in Section 1.6.5. Several examples and counterexamples

are given in Section 1.8.6 and an overview is given to show which polyno-

mials determine each other in Section 1.9.

These notes are based on the Master’s thesis [1], ongoing research [2, 3] and

the lecture notes [4] of the Soria Summer School in 2009. The whole chap-

ter is sell-contained, and various references to further reading, background

knowledge and open problems are given in Section 1.10.

1.2. Error-correcting codes

The basics of the theory of error-correcting codes one can find in [5–8].

1.2.1. Codes and Hamming distance

The idea of redundant information is a well known phenomenon in reading

a newspaper. Misspellings go usually unnoticed for a casual reader, while

the meaning is still grasped. In Semitic languages such as Hebrew, and even

older in the hieroglyphics in the tombs of the pharaohs of Egypt, only the

consonants are written while the vowels are left out, so that we do not

know for sure how to pronounce these words nowadays. The letter “e” is

the most frequent occurring symbol in the English language, and leaving

out all these letters would still give in almost all cases an understandable

text to the expense of greater attention of the reader. The art and science of

deleting redundant information in a clever way such that it can be stored in

less memory or space and still can be expanded to the original message, is

called data compression or source coding. It is not the topic of this chapter.

So we can compress data but an error made in a compressed text would
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give a different message that is most of the time completely meaningless.

The idea in error-correcting codes is the converse. One adds redundant in-

formation in such a way that it is possible to detect or even correct errors

after transmission.

Legend goes that Hamming was so frustrated the computer halted every

time it detected an error after he handed in a stack of punch cards, he

thought about a way the computer would be able not only to detect the error

but also to correct it automatically. He came with the nowadays famous

code named after him. Whereas the theory of Hamming [9] is about the

actual construction, the encoding and decoding of codes and uses tools

from combinatorics and algebra, the approach of Shannon [10] leads to

information theory and his theorems tell us what is and what is not possible

in a probabilistic sense.

source
encoding

sender

noise

receiver

decoding
target-

message
-001... -011... -

message

6

Fig. 1.1. Block diagram of a communication system

According to Shannon we have a message m in a certain alphabet and of a

certain length. We encode m to c by expanding the length of the message

and adding redundant information. One can define the information rate

R that measures the slowing down of the transmission of the data. The

encoded message c is sent over a noisy channel such that the symbols are

changed, according to certain probabilities that are characteristic of the

channel. The received word r is decoded to m′. Now given the characteris-

tics of the channel one can define the capacity C of the channel and it has

the property that for every R < C it is possible to find an encoding and

decoding scheme such that the error probability that m′ 6= m is arbitrarily

small. For R > C such a scheme is not possible. The capacity is explicitly

known as a function of the characteristic probability for quite a number of

channels.

The notion of a channel must be taken in a broad sense. Not only the trans-

mission of data via satellite or telephone but also the storage of information
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on a hard disk of a computer or a compact disc for music and film can be

modeled by a channel.

The theorem of Shannon tells us the existence of certain encoding and

decoding schemes, and even tells that they exist in abundance and that

almost all schemes satisfy the required conditions, but it does not tell us

how to construct a specific efficient scheme.

Example 1.1. Replacing every symbol by a threefold repetition gives the

possibility of correcting one error in every 3-tuple of symbols in a received

word by a majority vote. We call this a repetition code. The price one

has to pay is that the transmission is three times slower. We see here the

two conflicting demands of error-correction: to correct as many errors as

possible and to transmit as fast a possible. Notice furthermore that in case

two errors are introduced by transmission the majority decoding rule will

introduce an decoding error.

Example 1.2. An improvement of the repetition code of rate 1/3 is given

by Hamming. Suppose we have a message (m1,m2,m3,m4) of 4 bits. Put

them in the middle of the Venn-diagram of three intersecting circles as given

in Figure 1.2. Complete the three empty areas of the circles according to

the rule that the number of ones in every circle is even. In this way we

get 3 redundant bits (r1, r2, r3) that we add to the message and which we

transmit over the channel.

&%
'$

&%
'$

&%
'$
r1 r2

r3

m4

m3

m2 m1

Fig. 1.2. Venn diagram of the Hamming code

In every block of 7 bits the receiver can correct one error, since the parity

in every circle should be even. So if the parity is even we declare the circle

correct, if the parity is odd we declare the circle incorrect. The error is in

the incorrect circles and in the complement of the correct circles. We see

that every pattern of at most one error can be corrected in this way. For

instance, if m = (1, 1, 0, 1) is the message, then r = (0, 0, 1) is the redundant

information added and c = (1, 1, 0, 1, 0, 0, 1) the codeword sent. Suppose

that after transmission one symbol is flipped and y = (1, 0, 0, 1, 0, 0, 1) is
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the received word as given in Figure 1.3.
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Fig. 1.3. Venn diagram of a received word for the Hamming code

Then we conclude that the error is in the left and upper circle, but not in

the right one. And we conclude that the error is at m2. But in case of 2

errors, if for instance the word y′ = (1, 0, 0, 1, 1, 0, 1) is received, then the

receiver would assume that the error occurred in the upper circle and not

in the two lower circles, and would therefore conclude that the transmitted

codeword was (1, 0, 0, 1, 1, 0, 0). Hence the decoding scheme creates an extra

error.

The redundant information r can be obtained from the message m by means

of three linear equations or parity checks modulo 2:
r1 = m2 + m3 + m4

r2 = m1 + m3 + m4

r3 = m1 + m2 + m4

Let c = (m, r) be the codeword. Then c is a codeword if and only if

HcT = 0, where

H =

 0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 .

The information rate is improved from 1/3 for the repetition code to 4/7

for the Hamming code.

In general the alphabets of the message word and the encoded word might

be distinct. Furthermore the length of both the message word and the en-

coded word might vary such as in a convolutional code. We restrict ourselves

to [n, k] block codes: that is, the message words have a fixed length of k sym-

bols and the encoded words have a fixed length of n symbols both from the

same alphabet Q. For the purpose of error control, before transmission, we
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add redundant symbols to the message in a clever way.

Let Q be a set of q symbols called the alphabet. Let Qn be the set of all n-

tuples x = (x1, . . . , xn), with entries xi ∈ Q. A block code C of length n over

Q is a non-empty subset of Qn. The elements of C are called codewords. If

C contains M codewords, then M is called the size of the code. We call a

code with length n and size M a (n,M) code. If M = qk, then C is called

a [n, k] code. For a (n,M) code defined over Q, the value n − logq(M) is

called the redundancy. The information rate is defined as R = logq(M)/n.

Example 1.3. The repetition code has length 3 and 2 codewords, so its

information rate is 1/3. The Hamming code has length 7 and 24 codewords,

therefore its rate is 4/7. These are the same values as we found in Examples

1.1 and 1.2

Example 1.4. Let C be the binary block code of length n consisting of all

words with exactly two ones. This is a (n, n(n−1)/2) code. In this example

the number of codewords is not a power of the size of the alphabet.

Let C be a [n, k] block code over Q. An encoder of C is a one-to-one map

E : Qk −→ Qn

such that C = E(Qk). Let c ∈ C be a codeword. Then there exists a unique

m ∈ Qk with c = E(m). This m is called the message or source word of c.

In order to measure the difference between two distinct words and to eval-

uate the error-correcting capability of the code, we need to introduce an

appropriate metric to Qn. A natural metric used in coding theory is the

Hamming distance. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Qn, the Ham-

ming distance d(x,y) is defined as the number of places where they differ,

that is

d(x,y) = |{i : xi 6= yi}|.
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Fig. 1.4. Triangle inequality
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Proposition 1.1. The Hamming distance is a metric on Qn, that means

that it has the following properties for all x,y, z ∈ Qn:

(1) d(x, y) ≥ 0 and equality hods if and only if x = y,

(2) d(x, y) = d(y,x) (symmetry),

(3) d(x, z) ≤ d(x,y) + d(y, z) (triangle inequality).

Proof. Properties (1) and (2) are trivial from the definition. We leave

(3) to the reader as an exercise. �

The minimum (Hamming) distance of a code C of length n is defined as

d = d(C) = min{d(x,y) : x,y ∈ C,x 6= y}

if C consists of more than one element, and is by definition n + 1 if C

consists of one word. We denote by (n,M, d) a code C with length n, size

M and minimum distance d.

The main problem of error-correcting codes from “Hamming’s point of

view” is to construct for a given length and number of codewords a code

with the largest possible minimum distance, and to find efficient encoding

and decoding algorithms for such a code.

Example 1.5. The triple repetition code consists of two codewords:

(0, 0, 0) and (1, 1, 1), so its minimum distance is 3. The Hamming code

corrects one error. So the minimum distance is at least 3, by the triangle

inequality. The Hamming code has minimum distance 3. Notice that both

codes have the property that x + y is again a codeword if x and y are

codewords.

Let x ∈ Qn. The ball of radius r around x, denoted by Br(x), is defined

by Br(x) = {y ∈ Qn : d(x,y) ≤ r}. The sphere of radius r around x is

denoted by Sr(x) and defined by Sr(x) = {y ∈ Qn : d(x,y) = r}.

Figure 1.5 shows the ball in the Euclidean plane. This is misleading in some

respects, but gives an indication what we should have in mind.

Figure 1.6 shows Q2, where the alphabet Q consists of 5 elements. The ball

B0(x) consists of the point in the circle, B1(x) is depicted by the points

inside the cross, and B2(x) consists of all 25 dots.

Proposition 1.2. Let Q be an alphabet of q elements and x ∈ Qn. Then

|Si(x)| =
(
n

i

)
(q − 1)i and |Br(x)| =

r∑
i=0

(
n

i

)
(q − 1)i.
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Fig. 1.5. Ball of radius
√

2 in the Euclidean plane

Proof. Let y ∈ Si(x). Let I be the subset of {1, . . . , n} consisting of all

positions j such that yj 6= xj . Then the number of elements of I is equal to

i, and (q − 1)i is the number of words y ∈ Si(x) that have the same fixed

I. The number of possibilities to choose the subset I with a fixed number

of elements i is equal to
(
n
i

)
. This shows the formula for the number of

elements of Si(x).

Furthermore Br(x) is the disjoint union of the subsets Si(x) for i = 0, . . . , r.

This proves the statement about the number of elements of Br(x). �

1.2.2. Linear codes

If the alphabet Q is a finite field, which is the case for instance when

Q = {0, 1} = F2, then Qn is a vector space. Therefore it is natural to look

at codes in Qn that have more structure, in particular that are linear sub-

spaces.

A linear code C is a linear subspace of Fn
q , where Fq stands for the finite

field with q elements. The dimension of a linear code is its dimension as a

linear space over Fq. We denote a linear code C over Fq of length n and

dimension k by [n, k]q, or simply by [n, k]. If furthermore the minimum

distance of the code is d, then we call [n, k, d]q or [n, k, d] the parameters of

m
q q q q qq q q q qq q q q qq q q q qq q q q q

Fig. 1.6. Balls of radius 0 and 1 in the Hamming metric
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the code.

It is clear that for a linear [n, k] code over Fq, its size is M = qk. The

information rate is R = k/n and the redundancy is n− k.

Let C and D be linear codes in Fn
q . Then C is called permutation equiva-

lent to D, if there exists a permutation matrix Π such that Π(C) = D. If

moreover C = D, then Π is called an permutation automorphism of C. The

code C is called generalized equivalent or monomial equivalent to D, if there

exists a monomial matrix M such that M(C) = D. If moreover C = D,

then M is called a monomial automorphism of C.

For a word x ∈ Fn
q , its support, supp(x), is defined as the set of nonzero

coordinate positions, so supp(x) = {i : xi 6= 0}. The weight of x is defined

as the number of elements of its support, which is denoted by wt(x). The

minimum weight of a code C is defined as the minimal value of the weights

of the nonzero codewords in case there is a nonzero codeword, and n + 1

otherwise.

Proposition 1.3. The minimum distance of a linear code C of dimension

k > 0 is equal to its minimum weight.

Proof. Since C is a linear code, we have that 0 ∈ C and for any c1, c2 ∈
C, c1 − c2 ∈ C. Then the conclusion follows from the fact that wt(c) =

d(0, c) and d(c1, c2) = wt(c1 − c2). �

Now let us see some examples of linear codes.

Example 1.6. The repetition code over Fq of length n consists of all words

c = (c, c, . . . , c) with c ∈ Fq. This is a linear code of dimension 1 and

minimum distance n.

Example 1.7. Let n be an integer with n ≥ 2. The even weight code C of

length n over Fq consists of all words in Fn
q of even weight. The minimum

weight of C is 2 by definition, the minimum distance of C is 2 if q = 2 and

1 otherwise. The code C is linear if and only if q = 2.

Example 1.8. The Hamming code C of Example 1.2 consists of all the

words c ∈ F7
2 satisfying HcT = 0, where

H =

 0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 .



January 14, 2011 12:0 World Scientific Review Volume - 9in x 6in handbook-wtenum

10 R. Jurrius and R. Pellikaan

This code is linear of dimension 4, since it is given by the solutions of three

independent homogeneous linear equations in 7 variables. The minimum

weight is 3 as shown in Example 1.5. So it is a [7, 4, 3] code.

1.2.3. Generator matrix

Let C be a linear [n, k] code over Fq. Since C is a k-dimensional linear

subspace of Fn
q , there exists a basis that consists of k linearly independent

codewords, say g1, . . . ,gk. Suppose gi = (gi1, . . . , gin) for i = 1, . . . , k.

Denote

G =


g1

g2

...

gk

 =


g11 g12 · · · g1n

g21 g22 · · · g2n

...
...

...
...

gk1 gk2 · · · gkn

 .

Every codeword c can be written uniquely as a linear combination of the

basis elements, so c = m1g1 + · · · + mkgk where m1, . . . ,mk ∈ Fq. Let

m = (m1, . . . ,mk) ∈ Fk
q . Then c = mG. The encoding

E : Fk
q −→ Fn

q ,

from the message word m ∈ Fk
q to the codeword c ∈ Fn

q can be done

efficiently by a matrix multiplication.

c = E(m) := mG.

A k×n matrix G with entries in Fq is called a generator matrix of a Fq-linear

code C if the rows of G are a basis of C.

A given [n, k] code C can have more than one generator matrix, however

every generator matrix of C is a k × n matrix of rank k. Conversely every

k × n matrix of rank k is the generator matrix of a Fq-linear [n, k] code.

Example 1.9. The linear codes with parameters [n, 0, n + 1] and [n, n, 1]

are the trivial codes {0} and Fn
q , and they have the empty matrix and the

n× n identity matrix In as generator matrix, respectively.

Example 1.10. The repetition code of length n has generator matrix

G = ( 1 1 · · · 1 ).

Example 1.11. The Hamming code C of Example 1.2 is a [7, 4] code. The

message symbols mi for i = 1, . . . , 4 are free to choose. If we take mi = 1
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and the remaining mj = 0 for j 6= i we get the codeword gi. In this way we

get the basis g1,g2,g3,g4. Therefore, C has the following generator matrix

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

 .

Let C be a [n, k] code. The code is called systematic at the positions

(j1, . . . , jk) if for all m ∈ Fk
q there exists a unique codeword c such that

cji = mi for all i = 1, . . . , k. In that case, the set (j1, . . . , jk) is called an

information set. A generator matrix G of C is called systematic at the po-

sitions (j1, . . . , jk) if the k× k submatrix G′ consisting of the k columns of

G at the positions (j1, . . . , jk) is the identity matrix. For such a matrix G

the mapping m 7→mG is called systematic encoding.

1.2.4. Parity check matrix

There are two standard ways to describe a subspace, explicitly by giving

a basis, or implicitly by the solution space of a set of homogeneous linear

equations. Therefore there are two ways to describe a linear code. That is

explicitly as we have seen by a generator matrix, or implicitly by a set of

homogeneous linear equations, that is, by the null space of a matrix.

Let C be a Fq-linear [n, k] code. Suppose that H is a m × n matrix with

entries in Fq. Let C be the null space of H. So C is the set of all c ∈ Fn
q

such that HcT = 0. These m homogeneous linear equations are called parity

check equations, or simply parity checks. The dimension k of C is at least

n−m. If there are dependent rows in the matrix H, that is if k > n−m,

then we can delete a few rows until we obtain a (n− k)×n matrix H ′ with

independent rows and with the same null space as H. So H ′ has rank n−k.

A (n− k)×n matrix of rank n− k is called a parity check matrix of a [n, k]

code C if C is the null space of this matrix.

Remark 1.1. The parity check matrix of a code can be used for error

detection. This is useful in a communication channel where one asks for

retransmission in case more than a certain number of errors occurred. Sup-

pose that C is a linear code of minimum distance d and H is a parity check

matrix of C. Suppose that the codeword c is transmitted and r = c + e

is received. Then e is called the error vector and wt(e) the number of er-

rors. Now HrT = 0 if there is no error and HrT 6= 0 for all e such that
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0 < wt(e) < d. Therefore we can detect any pattern of t errors with t < d.

But not more, since if the error vector is equal to a nonzero codeword of

minimal weight d, then the receiver would assume that no errors have been

made. The vector HrT is called the syndrome of the received word.

We show that every linear code has a parity check matrix and we give a

method to obtain such a matrix in case we have a generator matrix G of

the code.

Proposition 1.4. Suppose C is a [n, k] code. Let Ik be the k × k identity

matrix. Let P be a k × (n− k) matrix. Then, (Ik|P ) is a generator matrix

of C if and only if (−PT |In−k) is a parity check matrix of C.

Proof. Every codeword c is of the form mG with m ∈ Fk
q . Suppose that

the generator matrix G is systematic at the first k positions. So c = (m, r)

with r ∈ Fn−k
q and r = mP . Hence for a word of the form c = (m, r) with

m ∈ Fk
q and r ∈ Fn−k

q the following statements are equivalent:

c is a codeword,

⇐⇒ −mP + r = 0,

⇐⇒ −PTmT + rT = 0,

⇐⇒
(
−PT |In−k

)
(m, r)T = 0,

⇐⇒
(
−PT |In−k

)
cT = 0.

Hence
(
−PT |In−k

)
is a parity check matrix of C. The converse is proved

similarly. �

Example 1.12. The trivial codes {0} and Fn
q have In and the empty matrix

as parity check matrix, respectively.

Example 1.13. As a consequence of Proposition 1.4 we see that a parity

check matrix of the binary even weight code is equal to the generator matrix

( 1 1 · · · 1 ) of the repetition code.

Example 1.14. The generator matrix G of the Hamming code C in Ex-

ample 1.11 is of the form (I4|P ) and in Example 1.8 we see that the parity

check matrix is equal to (PT |I3).

1.2.5. Inner product and dual codes

The inner product on Fn
q is defined by

x · y = x1y1 + · · ·+ xnyn
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for x,y ∈ Fn
q . This inner product is bilinear, symmetric and nondegenerate,

but the notion of “positive definite” makes no sense over a finite field as it

does over the real numbers. For instance for a binary word x ∈ Fn
2 we have

that x · x = 0 if and only if the weight of x is even.

For a [n, k] code C we define the dual or orthogonal code C⊥ as

C⊥ = {x ∈ Fn
q : c · x = 0 for all c ∈ C}.

Proposition 1.5. Let C be a [n, k] code with generator matrix G. Then

C⊥ is a [n, n− k] code with parity check matrix G.

Proof. From the definition of dual codes, the following statements are

equivalent:

x ∈ C⊥,
⇐⇒ c · x = 0 for all c ∈ C,
⇐⇒ mGxT = 0 for all m ∈ Fk

q ,

⇐⇒ GxT = 0.

This means that C⊥ is the null space of G. Because G is a k× n matrix of

rank k, the linear space C⊥ has dimension n − k and G is a parity check

matrix of C⊥. �

Example 1.15. The trivial codes {0} and Fn
q are dual codes.

Example 1.16. The binary even weight code and the repetition code of

the same length are dual codes.

1.2.6. The Hamming and simplex codes

The following proposition gives a method to determine the minimum dis-

tance of a code in terms of the number of dependent columns of the parity

check matrix.

Proposition 1.6. Let H be a parity check matrix of a code C. Then the

minimum distance d of C is the smallest integer d such that d columns of

H are linearly dependent.

Proof. Let h1, . . . ,hn be the columns of H. Let c be a nonzero codeword

of weight w. Let supp(c) = {j1, . . . , jw} with 1 ≤ j1 < · · · < jw ≤ n.

Then HcT = 0, so cj1hj1 + · · · + cjwhjw = 0 with cji 6= 0 for all i =

1, . . . , w. Therefore the columns hj1 , . . . ,hjw are dependent. Conversely if
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hj1 , . . . ,hjw are dependent, then there exist constants a1, . . . , aw, not all

zero, such that a1hj1 + · · ·+awhjw = 0. Let c be the word defined by cj = 0

if j 6= ji for all i, and cj = ai if j = ji for some i. Then HcT = 0. Hence c

is a nonzero codeword of weight at most w. �

Let H be a parity check matrix of a code C. As a consequence of Propo-

sition 1.6 we have the following special cases. The minimum distance of

code is 1 if and only if H has a zero column. Now suppose that H has no

zero column, then the minimum distance of C is at least 2. The minimum

distance is equal to 2 if and only if H has two columns say hj1 ,hj2 that

are dependent. In the binary case that means hj1 = hj2 . In other words

the minimum distance of a binary code is at least 3 if and only if H has

no zero columns and all columns are mutually distinct. This is the case for

the Hamming code of Example 1.8. For a given redundancy r the length

of a binary linear code C of minimum distance 3 is at most 2r − 1, the

number of all nonzero binary columns of length r. For arbitrary Fq, the

number of nonzero columns with entries in Fq is qr − 1. Two such columns

are dependent if and only if one is a nonzero multiple of the other. Hence

the length of a Fq-linear code C with d(C) ≥ 3 and redundancy r is at most

(qr − 1)/(q − 1).

Let n = (qr − 1)/(q− 1). Let Hr(q) be a r×n matrix over Fq with nonzero

columns, such that no two columns are dependent. The code Hr(q) with

Hr(q) as parity check matrix is called a q-ary Hamming code. The code with

Hr(q) as generator matrix is called a q-ary simplex code and is denoted by

Sr(q).The simplex code Sr(q) and the Hamming code Hr(q) are dual codes.

Proposition 1.7. Let r ≥ 2. Then the q-ary Hamming code Hr(q) has

parameters [(qr − 1)/(q − 1), (qr − 1)/(q − 1)− r, 3].

Proof. The rank of the matrix Hr(q) is r, since the r standard basis vec-

tors of weight 1 are among the columns of the matrix. So indeed Hr(q) is a

parity check matrix of a code with redundancy r. Any 2 columns are inde-

pendent by construction. And a column of weight 2 is a linear combination

of two columns of weight 1, and such a triple of columns exists, since r ≥ 2.

Hence the minimum distance is 3 by Proposition 1.6. �
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Example 1.17. Consider the following ternary Hamming code H3(3) of

redundancy 3 of length 13 with parity check matrix

H3(3) =

 1 1 1 1 1 1 1 1 1 0 0 0 0

2 2 2 1 1 1 0 0 0 1 1 1 0

2 1 0 2 1 0 2 1 0 2 1 0 1

 .

By Proposition 1.7 the code H3(3) has parameters [13, 10, 3]. Notice that all

rows of H3(3) have weight 9. In fact every linear combination xH3(3) with

x ∈ F3
3 and x 6= 0 has weight 9. So all nonzero codewords of the ternary

simplex code of dimension 3 have weight 9. Hence S3(3) is a constant weight

code. This is a general fact of simplex codes as is stated in the following

proposition.

Proposition 1.8. The q-ary simplex code Sr(q) is a constant weight code

with parameters [(qr − 1)/(q − 1), r, qr−1].

Proof. We have seen already in Proposition 1.7 that Hr(q) has rank r,

so it is indeed a generator matrix of a code of dimension r. Let c be a

nonzero codeword of the simplex code. Then c = mHr(q) for some nonzero

m ∈ Fr
q. Let hT

j be the j-th column of Hr(q). Then cj = 0 if and only if

m · hj = 0. Now m · x = 0 is a nontrivial homogeneous linear equation.

This equation has qr−1 solutions x ∈ Fr
q, it has qr−1 − 1 nonzero solutions.

It has (qr−1 − 1)/(q − 1) solutions x such that xT is a column of Hr(q),

since for every nonzero x ∈ Fr
q there is exactly one column in Hr(q) that is

a nonzero multiple of xT . So the number of zeros of c is (qr−1− 1)/(q− 1).

Hence the weight of c is the number of nonzero coordinates which is qr−1.�

1.2.7. Singleton bound and MDS codes

The following bound gives us the maximal minimum distance of a code with

a given length and dimension. This bound is called the Singleton bound.

Theorem 1.1. (The Singleton Bound) If C is a [n, k, d] code, then

d ≤ n− k + 1.

Proof. Let H be a parity check matrix of C. This is a (n−k)×n matrix

of row rank n−k. The minimum distance of C is the smallest integer d such

that H has d linearly dependent columns, by Proposition 1.6. This means

that every d− 1 columns of H are linearly independent. Hence, the column

rank of H is at least d − 1. By the fact that the column rank of a matrix
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is equal to the row rank, we have n− k ≥ d− 1. This implies the Singleton

bound. �

Let C be a [n, k, d] code. If d = n − k + 1, then C is called a maximum

distance separable code or a MDS code, for short. From the Singleton bound,

a maximum distance separable code achieves the maximum possible value

for the minimum distance given the code length and dimension.

Example 1.18. The minimum distance of the zero code of length n is

n + 1, by definition. Hence the zero code has parameters [n, 0, n + 1] and

is MDS. Its dual is the whole space Fn
q with parameters [n, n, 1] and is also

MDS. The n-fold repetition code has parameters [n, 1, n] and its dual is a

[n, n− 1, 2] code and both are MDS.

Proposition 1.9. For a [n, k, d] code over Fq, the following statements are

equivalent:

(1) C is an MDS code,

(2) every n− k columns of a parity check matrix H of C are linearly inde-

pendent,

(3) every k columns of a generator matrix G of C are linearly independent.

Proof. Let H be a parity check matrix of a [n, k, d] code C. As the mini-

mum distance of C is d, any d−1 columns of H are linearly independent by

Proposition 1.6. Now d ≤ n−k+1 by the Singleton bound. So d = n−k+1

if and only if every n− k columns of H are independent. Hence (1) and (2)

are equivalent.

Now let us assume (3). Let c be an element of C that is zero at k given

coordinates. Let c = xG for some x ∈ Fk
q . Let G′ be the square matrix con-

sisting of the k columns of G corresponding to the k given zero coordinates

of c. Then xG′ = 0. Hence x = 0, since the k columns of G′ are independent

by assumption. So c = 0. This implies that the minimum distance of C is

at least n− (k−1) = n−k+ 1. Therefore C is a [n, k, n−k+ 1] MDS code,

by the Singleton bound.

Assume that C is MDS. Let G be a generator matrix of C. Let G′ be the

square matrix consisting of k chosen columns of G. Let x ∈ Fk
q such that

xG′ = 0. Then c = xG is a codeword and its weight is at most n − k. So

c = 0, since the minimum distance is n−k+1. Hence x = 0, since the rank

of G is k. Therefore the k columns are independent. �

Proposition 1.10. Let n ≤ q. Let a = (a1, . . . , an) be an n-tuple of mutu-

ally distinct elements of Fq. Let k be an integer such that 0 ≤ k ≤ n. Define
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the matrices G(a) and G′(a) by

G(a) =


1 · · · 1

a1 · · · an
...

. . .
...

ak−1
1 · · · ak−1

n

 and G′(a) =


1 · · · 1 0

a1 · · · an 0
...

. . .
...

...

ak−1
1 · · · ak−1

n 1

 .

The codes with generator matrix G(a) and G′(a) are MDS.

Proof. All k × k submatrices are Vandermonde matrices, and their de-

terminant is not zero, since the ai are mutually distinct. �

1.3. Weight enumerators and error probability

1.3.1. Weight spectrum

The weight spectrum of a code is an important invariant, that provides

useful information for both the code structure and practical applications of

the code.

Let C be a code of length n. The weight spectrum or weight distribution is

the following set

{(w,Aw) : w = 0, 1, . . . , n}

where Aw denotes the number of codewords in C of weight w.

The so-called weight enumerator of a code C is a convenient representation

of the weight spectrum. It is defined as the following polynomial:

WC(Z) =

n∑
w=0

AwZ
w.

The homogeneous weight enumerator of C is defined as

WC(X,Y ) =

n∑
w=0

AwX
n−wY w.

Note that WC(Z) and WC(X,Y ) are equivalent in representing the weight

spectrum. They determine each other uniquely by the following equations:

WC(Z) = WC(1, Z) and WC(X,Y ) = XnWC(X−1Y ).
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Given the weight enumerator or the homogeneous weight enumerator, the

weight spectrum is determined completely by the coefficients.

Clearly, the weight enumerator and homogeneous weight enumerator can

be written in another form, that is

WC(Z) =
∑
c∈C

Zwt(c)

and

WC(X,Y ) =
∑
c∈C

Xn−wt(c)Y wt(c).

Example 1.19. The zero code has one codeword, and its weight is zero.

Hence the homogeneous weight enumerator of this code is W{0}(X,Y ) =

Xn. The number of words of weight w in the trivial code Fn
q is Aw =(

n
w

)
(q − 1)w. So

WFn
q
(X,Y ) =

n∑
w=0

(
n

w

)
(q − 1)wXn−wY w = (X + (q − 1)Y )n.

Example 1.20. The n-fold repetition code C has homogeneous weight

enumerator

WC(X,Y ) = Xn + (q − 1)Y n.

In the binary case its dual is the even weight code. Hence it has homoge-

neous weight enumerator

WC⊥(X,Y ) =

bn/2c∑
t=0

(
n

2t

)
Xn−2tY 2t =

1

2
((X + Y )n + (X − Y )n) .

Example 1.21. The nonzero entries of the weight distribution of the [7,4,3]

binary Hamming code are given by A0 = 1, A3 = 7, A4 = 7, A7 = 1, as is

seen by inspecting the weights of all 16 codewords. Hence its homogeneous

weight enumerator is

X7 + 7X4Y 3 + 7X3Y 4 + Y 7.

Example 1.22. The simplex code Sr(q) is a constant weight code by

Proposition 1.8 with parameters [(qr − 1)/(q − 1), r, qr−1]. Hence its ho-

mogeneous weight enumerator is

WSr(q)(X,Y ) = Xn + (qr − 1)Xn−qr−1

Y qr−1

.
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Let C be a linear code. Then A0 = 1 and the minimum distance d(C), which

is equal to the minimum weight, is determined by the weight enumerator

as follows:

d(C) = min{i : Ai 6= 0, i > 0}.

It also determines the dimension k of C, since

WC(1, 1) =

n∑
w=0

Aw = qk.

Although there is no apparent relation between the minimum distances of a

code and its dual, the weight enumerators satisfy the MacWilliams identity.

Theorem 1.2 (MacWilliams). Let C be a [n, k] code over Fq. Then

WC⊥(X,Y ) = q−kWC(X + (q − 1)Y,X − Y ).

Proof. See [8, Ch.5. §2. Theorem 1] for a proof for binary codes. A general

proof will be given via matroids in Theorem 1.13. �

The computation of the minimum distance and the weight enumerator of

a code is NP-hard [11–13].

Example 1.23. The zero code C has homogeneous weight enumerator Xn

and its dual Fn
q has homogeneous weight enumerator (X + (q − 1)Y )n, by

Example 1.19, which is indeed equal to q0WC(X + (q − 1)Y,X − Y ) and

confirms MacWilliams identity.

Example 1.24. The n-fold repetition code C has homogeneous weight

enumerator Xn + (q − 1)Y n and the homogeneous weight enumerator of

its dual code in the binary case is 1
2 ((X + Y )n + (X − Y )n), by Example

1.20, which is equal to 2−1WC(X+Y,X−Y ), confirming the MacWilliams

identity for q = 2. For arbitrary q we have

WC⊥(X,Y ) = q−1WC(X + (q − 1)Y,X − Y )

= q−1((X + (q − 1)Y )n + (q − 1)(X − Y )n)

=

n∑
w=0

(
n

w

)
(q − 1)w + (q − 1)(−1)w

q
Xn−wY w.
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1.3.2. The decoding problem

Let C be a linear code in Fn
q of minimum distance d. If c is a transmitted

codeword and r is the received word, then {i : ri 6= ci} is the set of error

positions and the number of error positions is called the number of errors

of the received word. Let e = r − c. Then e is called the error vector and

r = c+e. Hence supp(e) is the set of error positions and wt(e) the number

of errors. The ei’s are called the error values.

If t′ = d(C, r) is the distance of r to the code C, then there exists a near-

est codeword c′ such that t′ = d(c′, r). So there exists an error vector e′

such that r = c′ + e′ and wt(e′) = t′. If the number of errors t is at most

(d − 1)/2, then we are sure that c = c′ and e = e′. In other words, the

nearest codeword to r is unique when r has distance at most (d − 1)/2 to

C. The number b(d(C)− 1)/2c is called the error-correcting capacity of the

code C and is denoted by e(C).

A decoder D for the code C is a map

D : Fn
q −→ Fn

q ∪ {∗}

such that D(c) = c for all c ∈ C.

If E : Fk
q → Fn

q is an encoder of C and D : Fn
q → Fk

q ∪ {∗} is a map such

that D(E(m)) = m for all m ∈ Fk
q , then D is called a decoder with respect

to the encoder E . Then E ◦ D is a decoder of C.

It is allowed that the decoder gives as outcome the symbol ∗ in case it fails

to find a codeword. This is called a decoding failure. If c is the codeword

sent and r is the received word and D(r) = c′ 6= c, then this is called a

decoding error. If D(r) = c, then r is decoded correctly. Notice that a de-

coding failure is noted on the receiving end, whereas there is no way that

the decoder can detect a decoding error.

A complete decoder is a decoder that always gives a codeword in C as out-

come. A nearest neighbor decoder, also called a minimum distance decoder,

is a complete decoder with the property that D(r) is a nearest codeword. A

decoder D for a code C is called a t-bounded distance decoder or a decoder

that corrects t errors if D(r) is a nearest codeword for all received words r

with d(C, r) ≤ t errors. A decoder for a code C with error-correcting capac-

ity e(C) decodes up to half the minimum distance if it is an e(C)-bounded

distance decoder, where e(C) = b(d(C) − 1)/2c is the error-correcting ca-
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pacity of C.

If D is a t-bounded distance decoder, then it is not required that D gives

a decoding failure as outcome for a received word r if the distance of r to

the code is strictly larger than t. In other words: D is also a t′-bounded

distance decoder for all t′ ≤ t.

The covering radius ρ(C) is of a code C is the smallest ρ such that

d(C,y) ≤ ρ for all y. A nearest neighbor decoder is a t-bounded distance

decoder for all t ≤ ρ(C). A ρ(C)-bounded distance decoder is a nearest

neighbor decoder, since d(C, r) ≤ ρ(C) for all received words r.

Let r be a received word with respect to a code C. We call the set

r + C = {r + c : c ∈ C} the coset of r in C. If r is a codeword, the

coset is equal to the code itself. If r is not a codeword, the coset is not a

linear subspace. A coset leader of r+C is a choice of an element of minimal

weight in the coset r + C.

The choice of a coset leader of the coset r+C is unique if d(C, r) ≤ (d−1)/2.

Let ρ(C) be the covering radius of the code, then there is at least one code-

word c such that d(c, r) ≤ ρ(C). Hence the weight of a coset leader is at

most ρ(C).

Let r be a received word. Let e be the chosen coset leader of the coset r+C.

The coset leader decoder gives r− e as output. The coset leader decoder is

a nearest neighbor decoder. A list decoder gives as output the collection of

all nearest codewords.

Knowing the existence of a decoder is nice to know from a theoretical

point of view, in practice the problem is to find an efficient algorithm that

computes the outcome of the decoder. Whereas finding the closest vector of

a given vector to a linear subspace in Euclidean n-space can be computed

efficiently by an orthogonal projection to the subspace, the corresponding

problem for linear codes is in general not such an easy task. In fact it is an

NP-hard problem [11].
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1.3.3. The q-ary symmetric channel

The q-ary symmetric channel (qSC) is a channel where q-ary words are

sent with independent errors with the same cross-over probability p at each

coordinate, with 0 ≤ p ≤ q−1
q , such that all the q − 1 wrong symbols occur

with the same probability p/(q − 1). So a symbol is transmitted correctly

with probability 1−p. The special case q = 2 is called the binary symmetric

channel (BSC).

Remark 1.2. Let P (x) be the probability that the codeword x is sent.

Then this probability is assumed to be the same for all codewords. Hence

P (x) = 1
|C| for all x ∈ C. Let P (y|x) be the probability that y is received

given that x is sent. Then

P (y|x) =

(
p

q − 1

)d(x,y)

(1− p)n−d(x,y)

for a q-ary symmetric channel.

Let C be a code of minimum distance d. Consider the decoder that corrects

up to t errors with 2t + 1 ≤ d. Let c be the codeword that is sent. Let r

be the received word. In case the distance of r to the code is at most t,

then the decoder will produce a unique closest codeword c′. If c = c′, then

this is called correct decoding which is the case if d(r, c) ≤ t. If c 6= c′ then

it is called a decoding error. If d(r, C) > t the decoding algorithm fails to

produce a codeword and such an instance is called a decoding failure.

For every decoding scheme and channel one defines three probabilities

Pcd(p), Pde(p) and Pdf (p), that is the probability of correct decoding, de-

coding error and decoding failure, respectively. Then

Pcd(p) + Pde(p) + Pdf (p) = 1 for all 0 ≤ p ≤ q − 1

q
.

So it suffices to find formulas for two of these three probabilities. The error

probability, also called the error rate is defined by Perr(p) = 1 − Pcd(p).

Hence

Perr(p) = Pde(p) + Pdf (p).

Proposition 1.11. The probability of correct decoding of a decoder that

corrects up to t errors with 2t+ 1 ≤ d of a code C of minimum distance d



January 14, 2011 12:0 World Scientific Review Volume - 9in x 6in handbook-wtenum

Codes, arrangements and matroids 23

on a q-ary symmetric channel with cross-over probability p is given by

Pcd(p) =

t∑
w=0

(
n

w

)
pw(1− p)n−w.

Proof. Every codeword has the same probability of transmission. So

Pcd(p) =
∑
x∈C

P (x)
∑

d(x,y)≤t

P (y|x)

=
1

|C|
∑
x∈C

∑
d(x,y)≤t

P (y|x)

=

t∑
w=0

(
n

w

)
(q − 1)w

(
p

q − 1

)w

(1− p)n−w

by Proposition 1.2 and Remark 1.2. Clearing the factor (q − 1)w in the

numerator and the denominator gives the desired result. �

In Proposition 1.14 a formula will be derived for the probability of decoding

error for a decoding algorithm that corrects errors up to half the minimum

distance.

Example 1.25. Consider the binary triple repetition code. Assume that

(0, 0, 0) is transmitted. In case the received word has weight 0 or 1, then

it is correctly decoded to (0, 0, 0). If the received word has weight 2 or 3,

then it is decoded to (1, 1, 1) which is a decoding error. Hence there are no

decoding failures and

Pcd(p) = (1−p)3+3p(1−p)2 = 1−3p2+2p3 and Perr(p) = Pde(p) = 3p2−2p3.

If the Hamming code is used, then there are no decoding failures and

Pcd(p) = (1− p)7 + 7p(1− p)6 and

Perr(p) = Pde(p) = 21p2 − 70p3 + 105p4 − 84p5 + 35p6 − 6p7.

This shows that the error probabilities of the repetition code is smaller than

the one for the Hamming code. This comparison is not fair, since only one

bit of information is transmitted with the repetition code and 4 bits with

the Hamming code. One could transmit 4 bits of information by using the

repetition code four times. This would give the error probability

1− (1− 3p2 + 2p3)4 = 12p2 − 8p3 − 54p4 + 72p5 + 84p6 − 216p7 + · · ·
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Suppose that four bits of information are transmitted uncoded, by the

Hamming code and the triple repetition code, respectively. Then the er-

ror probabilities are 0.04, 0.002 and 0.001, respectively, if the cross-over

probability is 0.01. The error probability for the repetition code is in fact

smaller than that of the Hamming code for all p ≤ 1
2 , but the transmission

by the Hamming code is almost twice as fast as the repetition code.

Example 1.26. Consider the binary n-fold repetition code. Let t = (n −
1)/2. Use the decoding algorithm correcting all patterns of t errors. Then

by Proposition 1.11 we have

Perr(p) =

n∑
i=t+1

(
n

i

)
pi(1− p)n−i.

Hence the error probability becomes arbitrarily small for increasing n. The

price one has to pay is that the information rate R = 1/n tends to 0. The

remarkable result of Shannon [10] states that for a fixed rate R < C(p),

where

C(p) = 1 + p log2(p) + (1− p) log2(1− p)

is the capacity of the binary symmetric channel, one can devise encoding

and decoding schemes such that Perr(p) becomes arbitrarily small.

The main problem of error-correcting codes from “Shannon’s point of view”

is to construct efficient encoding and decoding algorithms of codes with

the smallest error probability for a given information rate and cross-over

probability.

1.3.4. Error probability

Consider the q-ary symmetric channel where the receiver checks whether the

received word r is a codeword or not, for instance by computing wether HrT

is zero or not for a chosen parity check matrixH, and asks for retransmission

in case r is not a codeword, as explained in Remark 1.1. Now it may occur

that r is again a codeword but not equal to the codeword that was sent.

This is called an undetected error . See [14].

Proposition 1.12. Let WC(X,Y ) be the weight enumerator of C. Then the

probability of undetected error on a q-ary symmetric channel with cross-over

probability p is given by

Pue(p) = WC

(
1− p, p

q − 1

)
− (1− p)n.
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Proof. Every codeword has the same probability of transmission and the

code is linear. So without loss of generality we may assume that the zero

word is sent. Hence

Pue(p) =
1

|C|
∑
x∈C

∑
x6=y∈C

P (y|x) =
∑

06=y∈C

P (y|0).

If the received codeword y has weight w, then w symbols are changed and

the remaining n− w symbols remained the same. So

P (y|0) = (1− p)n−w
(

p

q − 1

)w

by Remark 1.2. Hence

Pue(p) =

n∑
w=1

Aw(1− p)n−w
(

p

q − 1

)w

.

Substituting X = 1 − p and Y = p/(q − 1) in WC(X,Y ) gives the desired

result, since A0 = 1. �

Now Pretr(p) = 1− Pue(p) is the probability of retransmission.

Example 1.27. Let C be the binary triple repetition code. Then Pue(p) =

p3, since WC(X,Y ) = X3 + Y 3 by Example 1.20.

Example 1.28. Let C be the [7, 4, 3] Hamming code. Then

Pue(p) = 7(1− p)4p3 + 7(1− p)3p4 + p7 = 7p3 − 21p4 + 21p5 − 7p6 + p7

by Example 1.21.

Proposition 1.13. Let N(v, w, s) be the number of error patterns in Fn
q of

weight w that are at distance s from a given word of weight v. Then

N(v, w, s) =
∑

0≤i,j≤n
i+2j+w=s+v

(
n− v

j + w − v

)(
v

i

)(
v − i
j

)
(q − 1)j+w−v(q − 2)i.

Proof. See [6]. Consider a given word x of weight v. Let y be a word of

weight w and distance s to x. Suppose that y has k nonzero coordinates

in the complement of the support of x, j zero coordinates in the support

of x, and i nonzero coordinates in the support of x that are distinct form

the coordinates of x. Then s = d(x,y) = i + j + k and wt(y) = w =

v+k− j. There are
(
n−v
k

)
possible subsets of k elements in the complement

of the support of x and there are (q − 1)k possible choices for the nonzero

symbols at the corresponding coordinates. There are
(
v
i

)
possible subsets
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of i elements in the support of x and there are (q − 2)i possible choices of

the symbols at those positions that are distinct form the coordinates of x.

There are
(
v−i
j

)
possible subsets of j elements in the support of x that are

zero at those positions. Hence

N(v, w, s) =
∑

i+j+k=s
v+k−j=w

[(
n− v
k

)
(q − 1)k

] [(
v

i

)
(q − 2)i

](
v − i
j

)
.

Rewriting this formula using k = j + w − v gives the desired result. �

Proposition 1.14. The probability of decoding error of a decoder that cor-

rects up to t errors with 2t+ 1 ≤ d of a code C of minimum distance d on

a q-ary symmetric channel with cross-over probability p is given by

Pde(p) =

n∑
w=0

(
p

q − 1

)w

(1− p)n−w
t∑

s=0

n∑
v=1

AvN(v, w, s).

Proof. This is left as an exercise. �

1.4. Codes, projective systems and arrangements

Let F be a field. A projective system P = (P1, . . . , Pn) in Pr(F), the projec-

tive space over F of dimension r, is an n-tuple of points Pj in this projective

space, such that not all these points lie in a hyperplane. See [15–17].

Let Pj be given by the homogeneous coordinates (p0j : p1j : . . . : prj). Let

GP be the (r+1)×n matrix with (p0j , p1j , . . . , prj)
T as j-th column. Then

GP has rank r + 1, since not all points lie in a hyperplane. If F is a finite

field, then GP is the generator matrix of a nondegenerate code over F of

length n and dimension r+ 1. Conversely, let G be a generator matrix of a

nondegenerate code C of dimension k over Fq. Then G has no zero columns.

Take the columns of G as homogeneous coordinates of points in Pk−1(Fq).

This gives the projective system PG over Fq of G.

Proposition 1.15. Let C be a nondegenerate code over Fq of length n and

dimension k with generator matrix G. Let PG be the projective system of

G. The code has minimum distance d if and only if n − d is the maximal

number of points of PG in a hyperplane of Pk−1(F).

Proof. See [15–17]. �
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An n-tuple (H1, . . . ,Hn) of hyperplanes in Fk is called an arrangement in

Fk. The arrangement is called simple if all the n hyperplanes are mutually

distinct. The arrangement is called central if all the hyperplanes are linear

subspaces. A central arrangement is called essential if the intersection of

all its hyperplanes is equal to {0}.

Let G = (gij) be a generator matrix of a nondegenerate code C of dimension

k. So G has no zero columns. Let Hj be the linear hyperplane in Fk
q with

equation

g1jX1 + · · ·+ gkjXk = 0.

The arrangement (H1, . . . ,Hn) associated with G will be denoted by AG.

In case of a central arrangement one considers the hyperplanes in Pk−1(F).

Note that projective systems and arrangements are dual notions and

that there is a one-to-one correspondence between generalized equivalence

classes of nondegenerate [n, k, d] codes over Fq, equivalence classes of pro-

jective systems over Fq of n points in Pk−1(Fq) and equivalence classes of

essential arrangements of n hyperplanes in Pk−1(Fq).

We can translate Proposition 1.15 for an arrangement.

Proposition 1.16. Let C be a nondegenerate code over Fq with generator

matrix G. Let c be a codeword c = xG for some x ∈ Fk
q . Then n−wt(c) is

equal to the number of hyperplanes in AG through x.

Proof. See [15–17]. �

A code C is called projective if d(C⊥) ≥ 3. Let G be a generator matrix of C.

Then C is projective if and only if C is nondegenerate and any two columns

of G are independent. So C is projective if and only if C is nondegenerate

and the hyperplanes of AG are mutually distinct.

1.5. The extended and generalized weight enumerator

The number Aw of codewords of weight w equals the number of points that

are on exactly n − w of the hyperplanes in AG, by Proposition 1.16. In

particular An is equal to the number of points that is in the complement

of the union of these hyperplanes in Fk
q . This number can be computed by
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the principle of inclusion/exclusion:

An = qk − |H1 ∪ · · · ∪Hn|

= qk +

n∑
w=1

(−1)w
∑

i1<···<iw
ij∈[n]

|Hi1 ∩ · · · ∩Hiw |.

The following notations are introduced to find a formalism as above for the

computation of the weight enumerator. This method is based on Katsman

and Tsfasman [15]. Later we will encounter two more methods: by matroids

and the Tutte polynomial in Section 1.6.3 and by geometric lattices and the

characteristic polynomial in Section 1.7.

Definition 1.1. For a subset J of [n] := {1, 2, . . . , n} define

C(J) = {c ∈ C : cj = 0 for all j ∈ J}
l(J) = dimC(J)

BJ = ql(J) − 1

Bt =
∑
|J|=t

BJ .

Remark 1.3. The encoding map x 7→ xG = c from vectors x ∈ Fk
q to

codewords gives the following isomorphism of vector spaces⋂
j∈J

Hj
∼= C(J)

by Proposition 1.16. Furthermore BJ is equal to the number of nonzero

codewords c that are zero at all j in J , and this is equal to the number of

nonzero elements of the intersection
⋂

j∈J Hj .

Proposition 1.17. We have the following connection between the Bt and

the weight distribution of a code:

Bt =

n−t∑
w=d

(
n− w
t

)
Aw .

Proof. Count in two ways the number of elements of the set

{(J, c) : J ⊆ [n], |J | = t, c ∈ C, c 6= 0}.
�

We will generalize this idea to determine the generalized weight enumera-

tors.
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1.5.1. Generalized weight enumerators

The notion of the generalized weight enumerator was first introduced by

Helleseth, Kløve and Mykkeltveit [18, 19] and later studied by Wei [20]. See

also [21]. This notion has applications in the wire-tap channel II [22] and

trellis complexity [23].

Instead of looking at words of C, we consider all the subcodes of C of

a certain dimension r. We say that the weight of a subcode (also called

the effective length or support weight) is equal to n minus the number of

coordinates that are zero for every word in the subcode. The smallest weight

for which a subcode of dimension r exists, is called the r-th generalized

Hamming weight of C. To summarize:

supp(D) = {i ∈ [n] : there is an x ∈ D : xi 6= 0},
wt(D) = |supp(D)|

dr = min{wt(D) : D ⊆ C subcode,dimD = r}.

Note that d0 = 0 and d1 = d, the minimum distance of the code. The num-

ber of subcodes with a given weight w and dimension r is denoted by A
(r)
w .

Together they form the r-th generalized weight distribution of the code. Just

as with the ordinary weight distribution, we can make a polynomial with

the distribution as coefficients: the generalized weight enumerator .

The r-th generalized weight enumerator is given by

W
(r)
C (X,Y ) =

n∑
w=0

A(r)
w Xn−wY w,

where A
(r)
w = |{D ⊆ C : dimD = r,wt(D) = w}|.

We can see from this definition that A
(0)
0 = 1 and A

(r)
0 = 0 for all 0 < r ≤ k.

Furthermore, every 1-dimensional subspace of C contains q − 1 nonzero

codewords, so (q − 1)A
(1)
w = Aw for 0 < w ≤ n. This means we can find

back the original weight enumerator by using

WC(X,Y ) = W
(0)
C (X,Y ) + (q − 1)W

(1)
C (X,Y ).

We will give a way to determine the generalized weight enumerator of a

linear [n, k] code C over Fq. We give two lemmas about the determination

of l(J), which will become useful later.
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Lemma 1.1. Let C be a linear code with generator matrix G. Let J ⊆ [n]

and |J | = t. Let GJ be the k × t submatrix of G existing of the columns of

G indexed by J , and let r(J) be the rank of GJ . Then the dimension l(J)

is equal to k − r(J).

Proof. Let CJ be the code generated by GJ . Consider the projection

map π : C → Ft
q given by deleting the coordinates that are not indexed

by J . Then π is a linear map, the image of C under π is CJ and the

kernel is C(J) by definition. It follows that dimCJ + dimC(J) = dimC.

So l(J) = k − r(J). �

Lemma 1.2. Let d and d⊥ be the minimum distance of C and C⊥, respec-

tively. Let J ⊆ [n] and |J | = t. Then we have

l(J) =

{
k − t for all t < d⊥

0 for all t > n− d

Proof. Let t > n − d and let c ∈ C(J). Then J is contained in the

complement of supp(c), so t ≤ n−wt(c). It follows that wt(c) ≤ n− t < d,

so c is the zero word and therefore l(J) = 0.

Let G be a generator matrix for C, then G is also a parity check matrix

for C⊥. We saw in Lemma 1.1 that l(J) = k− r(J), where r(J) is the rank

of the matrix formed by the columns of G indexed by J . Let t < d⊥, then

every t-tuple of columns of G is linearly independent by Proposition 1.6, so

r(J) = t and l(J) = k − t. �

Note that by the Singleton bound, we have d⊥ ≤ n − (n − k) + 1 = k + 1

and n − d ≥ k − 1, so for t = k both of the above cases apply. This is no

problem, because if t = k then k − t = 0.

We introduce the following notations:

[m, r]q =

r−1∏
i=0

(qm − qi)

〈r〉q = [r, r]q[
k

r

]
q

=
[k, r]q
〈r〉q

.

Remark 1.4. The first number is equal to the number of m×r matrices of

rank r over Fq. The second is the number of bases of Fr
q. The third number

is the Gaussian binomial, and it represents the number of r-dimensional

subspaces of Fk
q .
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For J ⊆ [n] and r ≥ 0 an integer we define:

B
(r)
J = |{D ⊆ C(J) : D subspace of dimension r}|

B
(r)
t =

∑
|J|=t

B
(r)
J

Note that B
(r)
J =

[
l(J)
r

]
q
. For r = 0 this gives B

(0)
t =

(
n
t

)
. So we see that in

general l(J) = 0 does not imply B
(r)
J = 0, because

[
0
0

]
q

= 1. But if r 6= 0,

we do have that l(J) = 0 implies B
(r)
J = 0 and B

(r)
t = 0.

Proposition 1.18. Let r be a positive integer. Let dr be the r-th generalized

Hamming weight of C, and d⊥ the minimum distance of the dual code C⊥.

Then we have

B
(r)
t =

{(
n
t

) [
k−t
r

]
q

for all t < d⊥

0 for all t > n− dr

Proof. The first case is a direct corollary of Lemma 1.2, since there are(
n
t

)
subsets J ⊆ [n] with |J | = t. The proof of the second case goes analogous

to the proof of the same lemma: let |J | = t, t > n−dr and suppose there is a

subspace D ⊆ C(J) of dimension r. Then J is contained in the complement

of supp(D), so t ≤ n−wt(D). It follows that wt(D) ≤ n− t < dr, which is

impossible, so such a D does not exist. So B
(r)
J = 0 for all J with |J | = t

and t > n− dr, and therefore B
(r)
t = 0 for t > n− dr. �

We can check that the formula is well-defined: if t < d⊥ then l(J) = k − t.
If also t > n− dr, we have t > n− dr ≥ k − r by the generalized Singleton

bound. This implies r > k − t = l(J), so
[
k−t
r

]
q

= 0.

The relation between B
(r)
t and A

(r)
w becomes clear in the next proposition.

Proposition 1.19. The following formula holds:

B
(r)
t =

n∑
w=0

(
n− w
t

)
A(r)

w .

Proof. We will count the elements of the set

B(r)
t = {(D,J) : J ⊆ [n], |J | = t,D ⊆ C(J) subspace of dimension r}

in two different ways. For each J with |J | = t there are B
(r)
J pairs (D,J) in

B(r)
t , so the total number of elements in this set is

∑
|J|=tB

(r)
J = B

(r)
t . On

the other hand, let D be an r-dimensional subcode of C with wt(D) = w.
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There are A
(r)
w possibilities for such a D. If we want to find a J such that

D ⊆ C(J), we have to pick t coordinates from the n−w all-zero coordinates

of D. Summation over all w proves the given formula. �

Note that because A
(r)
w = 0 for all w < dr, we can start summation at

w = dr. We can end summation at w = n− t because for t > n−w we have(
n−w

t

)
= 0. So the formula can be rewritten as

B
(r)
t =

n−t∑
w=dr

(
n− w
t

)
A(r)

w .

In practice, we will often prefer the summation given in the proposition.

Theorem 1.3. The generalized weight enumerator is given by the following

formula:

W
(r)
C (X,Y ) =

n∑
t=0

B
(r)
t (X − Y )tY n−t.

Proof. By using the previous proposition, changing the order of summa-

tion and using the binomial expansion of Xn−w = ((X − Y ) + Y )n−w we

have
n∑

t=0

B
(r)
t (X − Y )tY n−t =

n∑
t=0

n∑
w=0

(
n− w
t

)
A(r)

w (X − Y )tY n−t

=

n∑
w=0

A(r)
w

(
n−w∑
t=0

(
n− w
t

)
(X − Y )tY n−w−t

)
Y w

=

n∑
w=0

A(r)
w Xn−wY w

= W
(r)
C (X,Y ).

In the second step, we can let the summation over t run to n − w instead

of n because
(
n−w

t

)
= 0 for t > n− w. �

It is possible to determine the A
(r)
w directly from the B

(r)
t , by using the

next proposition.

Proposition 1.20. The following formula holds:

A(r)
w =

n∑
t=n−w

(−1)n+w+t

(
t

n− w

)
B

(r)
t .
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There are several ways to prove this proposition. One is to reverse the

argument from Theorem 1.3; this method is left as an exercise. Instead, we

first prove the following general lemma:

Lemma 1.3. Let V be a vector space of dimension n + 1 and let a =

(a0, . . . , an) and b = (b0, . . . , bn) be vectors in V . Then the following for-

mulas are equivalent:

aj =

n∑
i=0

(
i

j

)
bi, bj =

n∑
i=j

(−1)i+j

(
i

j

)
ai.

Proof. We can view the relations between a and b as linear transforma-

tions, given by the matrices with entries
(
i
j

)
and (−1)i+j

(
i
j

)
, respectively.

So it is sufficient to prove that these matrices are each other’s inverse. We

calculate the entry on the i-th row and j-th column. Note that we can start

the summation at l = j, because for l < j we have
(
l
j

)
= 0.

i∑
l=j

(−1)j+l

(
i

l

)(
l

j

)
=

i∑
l=j

(−1)l−j
(
i

j

)(
i− j
l − j

)

=

i−j∑
l=0

(−1)l
(
i

j

)(
i− j
l

)
=

(
i

j

)
(1− 1)i−j

= δij .

Here δij is the Kronecker-delta. So the product matrix is exactly the identity

matrix of size n+ 1, and therefore the matrices are each other’s inverse.�

Proof. (Proposition 1.20) The proposition is now a direct consequence

of Proposition 1.19 and Lemma 1.3. �

1.5.2. Extended weight enumerator

Let G be the generator matrix of a linear [n, k] code C over Fq. Then we

can form the [n, k] code C⊗Fqm over Fqm by taking all Fqm -linear combina-

tions of the codewords in C. We call this the extension code of C over Fqm .

We denote the number of codewords in C ⊗ Fqm of weight w by AC⊗Fqm ,w

and the number of subspaces in C ⊗ Fqm of dimension r and weight w by

A
(r)
C⊗Fqm ,w. We can determine the weight enumerator of such an extension

code by using only the code C.
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By embedding its entries in Fqm , we find that G is also a generator ma-

trix for the extension code C ⊗ Fqm . In Lemma 1.1 we saw that l(J) =

k − r(J). Because r(J) is independent of the extension field Fqm , we have

dimFq
C(J) = dimFqm

(C ⊗ Fqm)(J). This motivates the usage of T as a

variable for qm in the next definition, that is an extension of Definition 1.1.

Definition 1.2. Let C be a linear code over Fq. Then we define

BJ(T ) = T l(J) − 1

Bt(T ) =
∑
|J|=t

BJ(T )

The extended weight enumerator is given by

WC(X,Y, T ) = Xn +

n∑
t=0

Bt(T )(X − Y )tY n−t.

Note that BJ(qm) is the number of nonzero codewords in (C ⊗ Fqm)(J).

Proposition 1.21. Let d and d⊥ be the minimum distance of C and C⊥

respectively. Then we have

Bt(T ) =

{(n
t

)
(T k−t − 1) for all t < d⊥

0 for all t > n− d

Proof. This proposition and its proof are generalizations of Proposition

1.17 and its proof. The proof is a direct consequence of Lemma 1.2. For

t < d⊥ we have l(J) = k−t, soBJ(T ) = T k−t−1 andBt(T ) =
(
n
t

)
(T k−t−1).

For t > n− d we have l(J) = 0, so BJ(T ) = 0 and Bt(T ) = 0. �

Theorem 1.4. The following holds:

WC(X,Y, T ) =

n∑
w=0

Aw(T )Xn−wY w

with Aw(T ) ∈ Z[T ] given by A0(T ) = 1 and

Aw(T ) =

n∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Bt(T )

for 0 < w ≤ n.

Proof. Note that Aw(T ) = 0 for 0 < w < d because the summation is

empty. By substituting w = n− t+j and reversing the order of summation,
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we have

WC(X,Y, T ) = Xn +

n∑
t=0

Bt(T )(X − Y )tY n−t

= Xn +

n∑
t=0

Bt(T )

 t∑
j=0

(
t

j

)
(−1)jXt−jY j

Y n−t

= Xn +

n∑
t=0

t∑
j=0

(−1)j
(
t

j

)
Bt(T )Xt−jY n−t+j

= Xn +
n∑

t=0

n∑
w=n−t

(−1)t−n+w

(
t

t− n+ w

)
Bt(T )Xn−wY w

= Xn +

n∑
w=0

n∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Bt(T )Xn−wY w

Hence WC(X,Y, T ) is of the form
∑n

w=0Aw(T )Xn−wY w with Aw(T ) of

the form given in the theorem. �

Note that in the definition of Aw(T ) we can let the summation over t run

to n− d instead of n, because Bt(T ) = 0 for t > n− d.

Proposition 1.22. The following formula holds:

Bt(T ) =

n−t∑
w=d

(
n− w
t

)
Aw(T ).

Proof. The statement is a direct consequence of Lemma 1.3 and Theorem

1.4. �

As we said before, the motivation for looking at the extended weight enu-

merator comes from the extension codes. In the next proposition we show

that the extended weight enumerator for T = qm is indeed the weight

enumerator of the extension code C ⊗ Fqm .

Proposition 1.23. Let C be a linear [n, k] code over Fq. Then we have

WC(X,Y, qm) = WC⊗Fqm
(X,Y ).

Proof. For w = 0 it is clear that A0(qm) = AC⊗Fqm ,0 = 1, so assume

w 6= 0. It is enough to show that Aw(qm) = (qm − 1)A
(1)
C⊗Fqm ,w. First we
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have

Bt(q
m) =

∑
|J|=t

BJ(qm)

=
∑
|J|=t

|{c ∈ (C ⊗ Fqm)(J) : c 6= 0}|

= (qm − 1)
∑
|J|=t

|{D ⊆ (C ⊗ Fqm)(J) : dimD = 1}

= (qm − 1)B
(1)
t (C ⊗ Fqm).

We also know that Aw(T ) and Bt(T ) are related the same way as A
(1)
w and

B
(1)
t . Combining this proves the statement. �

Because of Proposition 1.23 we interpret WC(X,Y, T ) as the weight enu-

merator of the extension code over the algebraic closure of Fq. This means

we can find a relation with the two variable zeta-function of a code, see

Duursma [24].

For further applications, the next way of writing the extended weight enu-

merator will be useful:

Proposition 1.24. The extended weight enumerator of a linear code C can

be written as

WC(X,Y, T ) =

n∑
t=0

∑
|J|=t

T l(J)(X − Y )tY n−t.

Proof. By rewriting and using the binomial expansion of ((X−Y )+Y )n,
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we get

n∑
t=0

∑
|J|=t

T l(J)(X − Y )tY n−t

=

n∑
t=0

(X − Y )tY n−t
∑
|J|=t

(
(T l(J) − 1) + 1

)

=

n∑
t=0

(X − Y )tY n−t

∑
|J|=t

(T l(J) − 1) +

(
n

t

)
=

n∑
t=0

Bt(T )(X − Y )tY n−t +

n∑
t=0

(
n

t

)
(X − Y )tY n−t

=

n∑
t=0

Bt(T )(X − Y )tY n−t +Xn

= WC(X,Y, T )
�

1.5.3. Puncturing and shortening of codes

There are several ways to get new codes from existing ones. In this section,

we will focus on puncturing and shortening of codes and show how they are

used in an alternative algorithm for finding the extended weight enumer-

ator. The algorithm is based on the Tutte-Grothendieck decomposition of

matrices introduced by Brylawski [25]. Greene [26] used this decomposition

for the determination of the weight enumerator.

Let C be a linear [n, k] code and let J ⊆ [n]. Then the code C punctured by

J is obtained by deleting all the coordinates indexed by J from the code-

words of C. The length of this punctured code is n−|J | and the dimension

is at most k. Let C be a linear [n, k] code and let J ⊆ [n]. If we puncture

the code C(J) by J , we get the code C shortened by J . The length of this

shortened code is n− |J | and the dimension is l(J).

The operations of puncturing and shortening a code are each others dual:

puncturing a code C by J and then taking the dual, gives the same code

as shortening C⊥ by J .

We have seen that we can determine the extended weight enumerator of a

[n, k] code C with the use of a k × n generator matrix of C. This concept
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can be generalized for arbitrarily matrices, not necessarily of full rank.

Let F be a field. Let G be a k × n matrix over F, possibly of rank smaller

than k and with zero columns. Then for each J ⊆ [n] we define

l(J) = l(J,G) = k − r(GJ).

as in Lemma 1.1. Define the extended weight enumerator WG(X,Y, T ) as in

Definition 1.2. We can now make the following remarks about WG(X,Y, T ).

Proposition 1.25. Let G be a k × n matrix over F and WG(X,Y, T ) the

associated extended weight enumerator. Then the following statements hold:

(i) WG(X,Y, T ) is invariant under row-equivalence of matrices.

(ii) Let G′ be a l × n matrix with the same row-space as G, then we have

WG(X,Y, T ) = T k−lWG′(X,Y, T ). In particular, if G is a generator

matrix of a [n, k] code C, we have WG(X,Y, T ) = WC(X,Y, T ).

(iii) WG(X,Y, T ) is invariant under permutation of the columns of G.

(iv) WG(X,Y, T ) is invariant under multiplying a column of G with an

element of F∗.
(v) If G is the direct sum of G1 and G2, i.e. of the form(

G1 0

0 G2

)
,

then WG(X,Y, T ) = WG1(X,Y, T ) ·WG2(X,Y, T ).

Proof. (i) If we multiply G from the left with an invertible k×k matrix,

the r(J) do not change, and therefore (i) holds.

For (ii), we may assume without loss of generality that k ≥ l. Because G

and G′ have the same row-space, the ranks r(GJ) and r(G′J) are the same.

So l(J,G) = k − l + l(J,G′). Using Proposition 1.24 we have for G

WG(X,Y, T ) =

n∑
t=0

∑
|J|=t

T l(J,G)(X − Y )tY n−t

=

n∑
t=0

∑
|J|=t

T k−l+l(J,G′)(X − Y )tY n−t

= T k−l
n∑

t=0

∑
|J|=t

T l(J,G′)(X − Y )tY n−t

= T k−lWG′(X,Y, T ).

The last part of (ii) and (iii)–(v) follow directly from the definitions. �
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With the use of the extended weight enumerator for general matrices, we

can derive a recursive algorithm to determine the extended weight enu-

merator of a code. Let G be a k × n matrix with entries in F. Suppose

that the j-th column is not the zero vector. Then there exists a matrix

row-equivalent to G such that the j-th column is of the form (1, 0, . . . , 0)T .

Such a matrix is called reduced at the j-th column. In general, this reduc-

tion is not unique.

Let G be a matrix that is reduced at the j-th column a. The matrix G \ a
is the k × (n − 1) matrix G with the column a removed, and G/a is the

(k − 1) × (n − 1) matrix G with the column a and the first row removed.

We can view G \ a as G punctured by a, and G/a as G shortened by a.

For the extended weight enumerators of these matrices, we have the follow-

ing connection (we omit the (X,Y, T ) part for clarity):

Proposition 1.26. Let G be a k × n matrix that is reduced at the j-th

column a. For the extended weight enumerator of a reduced matrix G holds

WG = (X − Y )WG/a + YWG\a.

Proof. We distinguish between two cases here. First, assume that G \ a
and G/a have the same rank. Then we can choose a G with all zeros in the

first row, except for the 1 in the column a. So G is the direct sum of 1 and

G/a. By Proposition 1.25 parts (v) and (ii) we have

WG = (X + (T − 1)Y )WG/a and WG\a = TWG/a.

Combining the two gives

WG = (X + (T − 1)Y )WG/a

= (X − Y )WG/a + Y TWG/a

= (X − Y )WG/a + YWG\a.

For the second case, assume that G\a and G/a do not have the same rank.

So r(G \ a) = r(G/a) + 1. This implies G and G \ a do have the same rank.

We have that

WG(X,Y, T ) =

n∑
t=0

∑
|J|=t

T l(J,G)(X − Y )tY n−t.

by Proposition 1.24. This double sum splits into the sum of two parts by

distinguishing between the cases j ∈ J and j 6∈ J .
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Let j ∈ J , t = |J |, J ′ = J \ {j} and t′ = |J ′| = t− 1. Then

l(J ′, G/a) = k − 1− r((G/a)J′) = k − r(GJ) = l(J,G).

So the first part is equal to

n∑
t=0

∑
|J|=t
j∈J

T l(J,G)(X − Y )tY n−t =

n−1∑
t′=0

∑
|J′|=t′

T l(J′,G/a)(X − Y )t
′+1Y n−1−t′

which is equal to (X − Y )WG/a.

Let j 6∈ J . Then (G \ a)J = GJ . So l(J,G \ a) = l(J,G). Hence the second

part is equal to

n∑
t=0

∑
|J|=t
j 6∈J

T l(J,G)(X − Y )tY n−t = Y

n−1∑
t′=0

∑
|J|=t′

j 6∈J

T l(J,G\a)(X − Y )t
′
Y n−1−t′

which is equal to YWG\a. �

Theorem 1.5. Let G be a k × n matrix over F with n > k of the form

G = (Ik|P ), where P is a k× (n− k) matrix over F. Let A ⊆ [k] and write

PA for the matrix formed by the rows of P indexed by A. Let WA(X,Y, T ) =

WPA
(X,Y, T ). Then the following holds:

WC(X,Y, T ) =

k∑
l=0

∑
|A|=l

Y l(X − Y )k−lWA(X,Y, T ).

Proof. We use the formula of the last proposition recursively. We denote

the construction of G \ a by G1 and the construction of G/a by G2. Re-

peating this procedure, we get the matrices G11, G12, G21 and G22. So we

get for the weight enumerator

WG = Y 2WG11
+ Y (X − Y )WG12

+ Y (X − Y )WG21
+ (X − Y )2WG22

.

Repeating this procedure k times, we get 2k matrices with n − k columns

and 0, . . . , k rows, which form exactly the PA. In the diagram are the sizes

of the matrices of the first two steps: note that only the k × n matrix on

top has to be of full rank. The number of matrices of size (k − i)× (n− j)
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is given by the binomial coefficient
(
j
i

)
.

k × n

k × (n− 1) (k − 1)× (n− 1)

k × (n− 2) (k − 1)× (n− 2) (k − 2)× (n− 2)

On the last line we have W0(X,Y, T ) = Xn−k. This proves the formula. �

Example 1.29. Let C be the even weight code of length n = 6 over F2.

Then a generator matrix of C is the 5 × 6 matrix G = (I5|P ) with P =

(1, 1, 1, 1, 1, 1)T . So the matrices PA are l × 1 matrices with all ones. We

have W0(X,Y, T ) = X and Wl(X,Y, T ) = T l−1(X + (T − 1)Y ) by part (ii)

of Proposition 1.25. Therefore the weight enumerator of C is equal to

WC(X,Y, T ) = WG(X,Y, T )

= X(X − Y )5 +

5∑
l=1

(
5

l

)
Y l(X − Y )5−lT l−1(X + (T − 1)Y )

= X6 + 15(T − 1)X4Y 2 + 20(T 2 − 3T + 2)X3Y 3

+15(T 3 − 4T 2 + 6T − 3)X2Y 4

+6(T 4 − 5T 3 + 10T 2 − 10T + 4)XY 5

+(T 5 − 6T 4 + 15T 3 − 20T 2 + 15T − 5)Y 6.

For T = 2 we get WC(X,Y, 2) = X6 + 15X4Y 2 + 15X2Y 4 + Y 6, which we

indeed recognize as the weight enumerator of the even weight code that we

found in Example 1.20.

1.5.4. Connections

There is a connection between the extended weight enumerator and the

generalized weight enumerators. We first proof the next proposition.

Proposition 1.27. Let C be a linear [n, k] code over Fq, and let Cm be the

linear subspace consisting of the m× n matrices over Fq whose rows are in

C. Then there is an isomorphism of Fq-vector spaces between C ⊗Fqm and

Cm.
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Proof. Let α be a primitive m-th root of unity in Fqm . Then we can

write an element of Fqm in a unique way on the basis (1, α, α2, . . . , αm−1)

with coefficients in Fq. If we do this for all the coordinates of a word in

C⊗Fqm , we get a m×n matrix over Fq. The rows of this matrix are words

of C, because C and C⊗Fqm have the same generator matrix. This map is

clearly injective. There are (qm)k = qkm words in C⊗Fqm , and the number

of elements of Cm is (qk)m = qkm, so our map is a bijection. It is given by(
m−1∑
i=0

ci1α
i,

m−1∑
i=0

ci2α
i, . . . ,

m−1∑
i=0

cinα
i

)
7→


c01 c02 c03 . . . c0n
c11 c12 c13 . . . c1n
...

...
...

. . .
...

c(m−1)1 c(m−1)2 c(m−1)3 . . . c(m−1)n

 .

We see that the map is Fq-linear, so it gives an isomorphism of Fq-vector

spaces C ⊗ Fqm → Cm. �

Note that this isomorphism depends on the choice of a primitive element

α. The use of this isomorphism for the proof of Theorem 1.6 was suggested

by Simonis [21]. We also need the next subresult.

Lemma 1.4. Let c ∈ C ⊗ Fqm and M ∈ Cm the corresponding m × n

matrix under a given isomorphism. Let D ⊆ C be the subcode generated by

the rows of M . Then wt(c) = wt(D).

Proof. If the j-th coordinate cj of c is zero, then the j-th column of

M consists of only zero’s, because the representation of cj on the basis

(1, α, α2, . . . , αm−1) is unique. On the other hand, if the j-th column of M

consists of all zeros, then cj is also zero. Therefore wt(c) = wt(D). �

Proposition 1.28. Let C be a linear code over Fq. Then the weight nu-

merator of an extension code and the generalized weight enumerators are

connected via

Aw(qm) =

m∑
r=0

[m, r]qA
(r)
w .

Proof. We count the number of words in C⊗Fqm of weight w in two ways,

using the bijection of Proposition 1.27. The first way is just by substituting

T = qm in Aw(T ): this gives the left side of the equation. For the second
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way, note that every M ∈ Cm generates a subcode of C whose weight is

equal to the weight of the corresponding word in C⊗Fqm . Fix this weight w

and a dimension r: there are A
(r)
w subcodes of C of dimension r and weight

w. Every such subcode is generated by a r×n matrix whose rows are words

of C. Left multiplication by a m × r matrix of rank r gives an element of

Cm that generates the same subcode of C, and all such elements of Cm are

obtained this way. The number of m × r matrices of rank r is [m, r]q, so

summation over all dimensions r gives

Aw(qm) =

k∑
r=0

[m, r]qA
(r)
w .

We can let the summation run to m, because A
(r)
w = 0 for r > k and

[m, r]q = 0 for r > m. This proves the given formula. �

This result first appears in [18, Theorem 3.2], although the term “gener-

alized weight enumerator” was yet to be invented. In general, we have the

following theorem.

Theorem 1.6. Let C be a linear code over Fq. Then the extended weight

numerator and the generalized weight enumerators are connected via

WC(X,Y, T ) =

k∑
r=0

r−1∏
j=0

(T − qj)

W
(r)
C (X,Y ).

Proof. If we know A
(r)
w for all r, we can determine Aw(qm) for every m. If

we have k+1 values of m for which Aw(qm) is known, we can use Lagrange

interpolation to find Aw(T ), for this is a polynomial in T of degree at most

k. In fact, we have

Aw(T ) =

k∑
r=0

r−1∏
j=0

(T − qj)

A(r)
w .

This formula has the right degree and is correct for T = qm for all integer

values m ≥ 0, so we know it must be the correct polynomial. Therefore the

theorem follows. �

The converse of the theorem is also true: we can write the generalized weight

enumerator in terms of the extended weight enumerator.
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Theorem 1.7. Let C be a linear code over Fq. Then the generalized weight

enumerator and the extended weight enumerator are connected via

W
(r)
C (X,Y ) =

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j

2 ) WC(X,Y, qj).

Proof. We consider the generalized weight enumerator in terms of Propo-

sition 1.24. Then rewriting gives the following:

W
(r)
C (X,Y ) =

n∑
t=0

B
(r)
t (X − Y )tY n−t

=

n∑
t=0

∑
|J|=t

[
l(J)

r

]
q

(X − Y )tY n−t

=

n∑
t=0

∑
|J|=t

r−1∏
j=0

ql(J) − qj

qr − qj

 (X − Y )tY n−t

=
1∏r−1

v=0(qr − qv)

n∑
t=0

∑
|J|=t

r−1∏
j=0

(ql(J) − qj)

 (X − Y )tY n−t

=
1

〈r〉q

n∑
t=0

∑
|J|=t

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j

2 )qj·l(J)(X − Y )tY n−t

=
1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j

2 )
n∑

t=0

∑
|J|=t

(qj)l(J)(X − Y )tY n−t

=
1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j

2 ) WC(X,Y, qj)

In the fourth step, we use the following identity, which can be proven by

induction:

r−1∏
j=0

(Z − qj) =

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j

2 )Zj .

See [19, 27–30]. �

1.5.5. MDS-codes

We can use the theory in Sections 1.5.1 and 1.5.2 to calculate the weight

distribution, generalized weight distribution, and extended weight distribu-

tion of a linear [n, k] code C. This is done by determining the values l(J)
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for each J ⊆ [n]. In general, we have to look at the 2n different subcodes of

C to find the l(J), but for the special case of MDS codes we can find the

weight distributions much faster.

Proposition 1.29. Let C be a linear [n, k] MDS code, and let J ⊆ [n].

Then we have

l(J) =

{
0 for t > k

k − t for t ≤ k

so for a given t the value of l(J) is independent of the choice of J .

Proof. We know that the dual of an MDS code is also MDS, so d⊥ = k+1.

Now use d = n− k + 1 in Lemma 1.2. �

Now that we know all the l(J) for an MDS code, it is easy to find the weight

distribution.

Theorem 1.8. Let C be an MDS code with parameters [n, k]. Then the

generalized weight distribution is given by

A(r)
w =

(
n

w

)w−d∑
j=0

(−1)j
(
w

j

)[
w − d+ 1− j

r

]
q

.

The coefficients of the extended weight enumerator are given by

Aw(T ) =

(
n

w

)w−d∑
j=0

(−1)j
(
w

j

)
(Tw−d+1−j − 1).

Proof. We will give the construction for the generalized weight enumer-

ator here: the case of the extended weight enumerator goes similar and is

left as an exercise. We know from Proposition 1.29 that for an MDS code,

B
(r)
t depends only on the size of J , so B

(r)
t =

(
n
t

) [
k−t
r

]
q
. Using this in the
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formula for A
(r)
w and substituting j = t− n+ w, we have

A(r)
w =

n−dr∑
t=n−w

(−1)n+w+t

(
t

n− w

)
B

(r)
t

=

n−dr∑
t=n−w

(−1)t−n+w

(
t

n− w

)(
n

t

)[
k − t
r

]
q

=

w−dr∑
j=0

(−1)j
(
n

w

)(
w

j

)[
k + w − n− j

r

]
q

=

(
n

w

)w−dr∑
j=0

(−1)j
(
w

j

)[
w − d+ 1− j

r

]
q

.

In the second step, we are using the binomial equivalence(
n

t

)(
t

n− w

)
=

(
n

n− w

)(
n− (n− w)

t− (n− w)

)
=

(
n

w

)(
w

n− t

)
.

�

So, for all MDS-codes with given parameters [n, k] the extended and gener-

alized weight distributions are the same. But not all such codes are equiva-

lent. We can conclude from this, that the generalized and extended weight

enumerators are not enough to distinguish between codes with the same

parameters. We illustrate the non-equivalence of two MDS codes by an ex-

ample.

Example 1.30. Let C be a linear [n, 3] MDS code over Fq. It is possible

to write the generator matrix G of C in the following form: 1 1 . . . 1

x1 x2 . . . xn
y1 y2 . . . yn

 .

Because C is MDS we have d = n− 2. We now view the n columns of G as

points in the projective plane P2(Fq), say P1, . . . , Pn. The MDS property

that every k columns of G are independent is now equivalent with saying

that no three points are on a line. To see that these n points do not always

determine an equivalent code, consider the following construction. Through

the n points there are
(
n
2

)
= N lines, the set N . These lines determine (the

generator matrix of) a [N, 3] code Ĉ. The minimum distance of the code Ĉ

is equal to the total number of lines minus the maximum number of lines

from N through an arbitrarily point P ∈ P2(Fq) by Proposition 1.16. If
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P /∈ {P1, . . . , Pn} then the maximum number of lines from N through P

is at most 1
2n, since no three points of N lie on a line. If P = Pi for some

i ∈ [n] then P lies on exactly n − 1 lines of N , namely the lines PiPj for

j 6= i. Therefore the minimum distance of Ĉ is d = N − n+ 1.

We now have constructed a [N, 3, N − n + 1] code Ĉ from the original

code C. Notice that two codes Ĉ1 and Ĉ2 are generalized equivalent if C1

and C2 are generalized equivalent. The generalized and extended weight

enumerators of an MDS code of length n and dimension k are completely

determined by the pair (n, k), but this is not generally true for the weight

enumerator of Ĉ.

Take for example n = 6 and q = 9, so Ĉ is a [15, 3, 10] code. Look at the

codes C1 and C2 generated by the following matrices respectively, where

α ∈ F9 is a primitive element: 1 1 1 1 1 1

0 1 0 1 α5 α6

0 0 1 α3 α α3

  1 1 1 1 1 1

0 1 0 α7 α4 α6

0 0 1 α5 α 1


Being both MDS codes, the weight distribution is (1, 0, 0, 120, 240, 368). If

we now apply the above construction, we get Ĉ1 and Ĉ2 generated by 1 0 0 1 1 α4 α6 α3 α7 α 1 α2 1 α7 1

0 1 0 α7 1 0 0 α4 1 1 0 α6 α 1 α3

0 0 1 1 0 1 1 1 0 0 1 1 1 1 1


1 0 0 α7 α2 α3 α 0 α7 α7 α4 α7 α 0 0

0 1 0 1 0 α3 0 α6 α6 0 α7 α α6 α3 α

0 0 1 α5 α5 α6 α3 α7 α4 α3 α5 α2 α4 α α5


The weight distribution of Ĉ1 and Ĉ2 are, respectively,

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 16, 312, 288, 64) and

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 32, 264, 336, 48).

So the latter two codes are not generalized equivalent, and therefore not all

[6, 3, 4] MDS codes over F9 are generalized equivalent.

Another example was given in [31, 32] showing that two [6, 3, 4] MDS codes

could have distinct covering radii.
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1.6. Matroids and codes

Matroids were introduced by Whitney [33], axiomatizing and generalizing

the concepts of “independence” in linear algebra and “cycle-free” in graph

theory. In the theory of arrangements one uses the notion of a geometric

lattice that will be treated in Section 1.7.2. In graph and coding theory one

usually refers more to matroids. See [34–38] for basic facts of the theory of

matroids.

1.6.1. Matroids

A matroid M is a pair (E, I) consisting of a finite set E and a collection I
of subsets of E such that the following three conditions hold.

(I.1) ∅ ∈ I.

(I.2) If J ⊆ I and I ∈ I, then J ∈ I.

(I.3) If I, J ∈ I and |I| < |J |, then there exists a j ∈ (J \ I) such that

I ∪ {j} ∈ I.

A subset I of E is called independent if I ∈ I , otherwise it is called depen-

dent. Condition (I.2) is called the independence augmentation axiom.

If J is a subset of E, then J has a maximal independent subset, that is

there exists an I ∈ I such that I ⊆ J and I is maximal with respect to this

property and the inclusion. If I1 and I2 are maximal independent subsets

of J , then |I1| = |I2| by condition (I.3). The rank or dimension of a subset

J of E is the number of elements of a maximal independent subset of J .

An independent set of rank r(M) is called a basis of M . The collection of

all bases of M is denoted by B.

Let M1 = (E1, I1) and M2 = (E2, I2) be matroids. A map ϕ : E1 → E2 is

called a morphism of matroids if ϕ(I) ∈ I2 for all I ∈ I1. The map is called

an isomorphism of matroids if it is a morphism of matroids and there exists

a map ψ : E2 → E1 such that it is a morphism of matroids and it is the

inverse of ϕ. The matroids are called isomorphic if there is an isomorphism

of matroids between them.

Example 1.31. Let n and k be nonnegative integers such that k ≤ n. Let

In,k = {I ⊆ [n] : |I| ≤ k}. Then Un,k = ([n], In,k) is a matroid that is

called the uniform matroid of rank k on n elements. A subset B of [n] is
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a basis of Un,k if and only if |B| = k. The matroid Un,n has no dependent

sets and is called free.

Let (E, I) be a matroid. An element x in E is called a loop if {x} is a de-

pendent set. Let x and y in E be two distinct elements that are not loops.

Then x and y are called parallel if r({x, y}) = 1. The matroid is called

simple if it has no loops and no parallel elements. Now Un,r is the only

simple matroid of rank r if r ≤ 2.

Let G be a k × n matrix with entries in a field F. Let E be the set [n]

indexing the columns of G and IG be the collection of all subsets I of E

such that the submatrix GI consisting of the columns of G at the positions

of I are independent. Then MG = (E, IG) is a matroid. Suppose that F
is a finite field and G1 and G2 are generator matrices of a code C, then

(E, IG1
) = (E, IG2

). So the matroid MC = (E, IC) of a code C is well

defined by (E, IG) for some generator matrix G of C. If C is degenerate,

then there is a position i such that ci = 0 for every codeword c ∈ C and all

such positions correspond one-to-one with loops of MC . Let C be nonde-

generate. Then MC has no loops, and the positions i and j with i 6= j are

parallel in MC if and only if the i-th column of G is a scalar multiple of the

j-th column. The code C is projective if and only if the arrangement AG is

simple if and only if the matroid MC is simple. A [n, k] code C is MDS if

and only if the matroid MC is the uniform matroid Un,k.

A matroid M is called realizable or representable over the field F if there

exists a matrix G with entries in F such that M is isomorphic with MG.

For more on representable matroids we refer to Tutte [39] and Whittle [40,

41]. Let gn be the number of isomorphism classes of simple matroids on n

points. The values of gn are determined for n ≤ 8 by [42] and are given in

the following table:

n 1 2 3 4 5 6 7 8

gn 1 1 2 4 9 26 101 950

Extended tables can be found in [43]. Clearly gn ≤ 22n

. Asymptotically the

number gn is given in [44] and is as follows:

gn ≤ n− log2 n+O(log2 log2 n),

gn ≥ n− 3
2 log2 n+O(log2 log2 n).
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A crude upper bound on the number of k × n matrices with k ≤ n and

entries in Fq is given by (n+ 1)qn
2

. Hence the vast majority of all matroids

on n elements is not representable over a given finite field for n→∞.

Let M = (E, I) be a matroid. Let B be the collection of all bases of

M . Define B⊥ = (E \ B) for B ∈ B, and B⊥ = {B⊥ : B ∈ B}. Define

I⊥ = {I ⊆ E : I ⊆ B for some B ∈ B⊥}. Then (E, I⊥) is called the dual

matroid of M and is denoted by M⊥.

The dual matroid is indeed a matroid. Let C be a code over a finite field.

Then the matroids (MC)⊥ and MC⊥ are isomorphic.

Let e be a loop of the matroid M . Then e is not a member of any basis of

M . Hence e is in every basis of M⊥. An element of M is called an isthmus

if it is an element of every basis of M . Hence e is an isthmus of M if and

only if e is a loop of M⊥.

Proposition 1.30. Let (E, I) be a matroid with rank function r. Then the

dual matroid has rank function r⊥ given by

r⊥(J) = |J | − r(E) + r(E \ J).

Proof. The proof is based on the observation that r(J) = maxB∈B |B∩J |
and B \ J = B ∩ (E \ J).

r⊥(J) = max
B∈B⊥

|B ∩ J |

= max
B∈B
|(E \B) ∩ J |

= max
B∈B
|J \B|

= |J | −min
B∈B
|J ∩B|

= |J | − (|B| −max
B∈B
|B \ J |)

= |J | − r(E) + max
B∈B
|B ∩ (E \ J)|

= |J | − r(E) + r(E \ J).
�

1.6.2. Graphs, codes and matroids

Graph theory is regarded to start with the paper of Euler [45] with his

solution of the problem of the Königbergs bridges. For an introduction to
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the theory of graphs we refer to [46, 47].

A graph Γ is a pair (V,E) where V is a non-empty set and E is a set disjoint

from V . The elements of V are called vertices, and members of E are called

edges. Edges are incident to one or two vertices, which are called the ends

of the edge. If an edge is incident with exactly one vertex, then it is called

a loop. If u and v are vertices that are incident with an edge, then they

are called neighbors or adjacent. Two edges are called parallel if they are

incident with the same vertices. The graph is called simple if it has no loops

and no parallel edges.

A graph is called planar if the there is an injective map f : V → R2 from

the set of vertices V to the real plane such that for every edge e with ends

u and v there is a simple curve in the plane connecting the ends of the

edge such that mutually distinct simple curves do not intersect except at

the endpoints. More formally: for every edge e with ends u and v there is

an injective continuous map ge : [0, 1] → R2 from the unit interval to the

plane such that {f(u), f(v)} = {ge(0), ge(1)}, and ge(0, 1) ∩ ge′(0, 1) = ∅
for all edges e, e′ with e 6= e′.

•

•

•

•

•

•

Fig. 1.7. A planar graph

Example 1.32. Consider the next riddle:

Three new-build houses have to be connected to the three nearest termi-
nals for gas, water and electricity. For security reasons, the connections
are not allowed to cross. How can this be done?

The answer is “not”, because the corresponding graph (see Figure 1.9) is

not planar. This riddle is very suitable to occupy kids who like puzzles, but

make sure to have an easy explainable proof of the improbability. We leave

it to the reader to find one.

Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be graphs. A map ϕ : V1 → V2 is

called a morphism of graphs if ϕ(v) and ϕ(w) are connected in Γ2 for all
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v, w ∈ V1 that are connected in Γ1. The map is called an isomorphism of

graphs if it is a morphism of graphs and there exists a map ψ : V2 → V1

such that it is a morphism of graphs and it is the inverse of ϕ. The graphs

are called isomorphic if there is an isomorphism of graphs between them.

An edge of a graph is called an isthmus if the number of components of

the graph increases by deleting the edge. It the graph is connected, then

deleting an isthmus gives a graph that is no longer connected. Therefore

an isthmus is also called a bridge. An edge is an isthmus if and only if it is

in no cycle. Therefore an edge that is an isthmus is also called an acyclic

edge.

By deleting loops and parallel edges from a graph Γ one gets a simple graph.

There is a choice in the process of deleting parallel edges, but the resulting

graphs are all isomorphic. We call this simple graph the simplification of

the graph and it is denoted by Γ̄.

Let Γ = (V,E) be a graph. Let K be a finite set and k = |K|. The elements

of K are called colors. A k-coloring of Γ is a map γ : V → K such that

γ(u) 6= γ(v) for all distinct adjacent vertices u and v in V . So vertex u

has color γ(u) and all other adjacent vertices have a color distinct from

γ(u). Let PΓ(k) be the number of k-colorings of Γ. Then PΓ is called the

chromatic polynomial of Γ.

If the graph Γ has no edges, then PΓ(k) = kv where |V | = v and |K| = k,

since it is equal to the number of all maps from V to K. In particular there

is no map from V to an empty set in case V is nonempty. So the number

of 0-colorings is zero for every graph.

The number of colorings of graphs was studied by Birkhoff [48], Whit-

ney [49, 50] and Tutte [51–55]. Much research on the chromatic polynomial

was motivated by the four-color problem of planar graphs.

Let Kn be the complete graph on n vertices in which every pair of two dis-

tinct vertices is connected by exactly one edge. Then there is no k coloring

if k < n. Now let k ≥ n. Take an enumeration of the vertices. Then there

are k possible choices of a color of the first vertex and k− 1 choices for the

second vertex, since the first and second vertex are connected. Now suppose

by induction that we have a coloring of the first i vertices, then there are
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•

•

•

• •

Fig. 1.8. The complete graph K5

k − i possibilities to color the next vertex, since the (i + 1)-th vertex is

connected to the first i vertices. Hence

PKn
(k) = k(k − 1) · · · (k − n+ 1)

So PKn
(k) is a polynomial in k of degree n.

Proposition 1.31. Let Γ = (V,E) be a graph. Then PΓ(k) is a polynomial

in k.

Proof. See [48]. Let γ : V → K be a k-coloring of Γ with exactly i colors.

Let σ be a permutation of K. Then the composition of maps σ ◦γ is also k-

coloring of Γ with exactly i colors. Two such colorings are called equivalent.

Then k(k − 1) · · · (k − i + 1) is the number of colorings in the equivalence

class of a given k-coloring of Γ with exactly i colors. Let mi be the number

of equivalence classes of colorings with exactly i colors of the set K. Let

v = |V |. Then PΓ(k) is equal to

m1k+m2k(k−1)+. . .+mik(k−1) · · · (k−i+1)+. . .+mvk(k−1) · · · (k−v+1).

Therefore PΓ(k) is a polynomial in k. �

A graph Γ = (V,E) is called bipartite if V is the disjoint union of two

nonempty sets M and N such that the ends of an edge are in M and in

N . Hence no two points in M are adjacent and no two points in N are

adjacent. Let m and n be integers such that 1 ≤ m ≤ n. The complete

bipartite graph Km,n is the graph on a set of vertices V that is the disjoint

union of two sets M and N with |M | = m and |N | = n, and such that

every vertex in M is connected with every vertex in N by a unique edge.

Another tool to show that PΓ(k) is a polynomial this by deletion-contraction

of graphs, a process which is similar to the puncturing and shortening of

codes from Section 1.5.3.
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•

• • •

• •

Fig. 1.9. The complete bipartite graph K3,3

Let Γ = (V,E) be a graph. Let e be an edge that is incident to the vertices

u and v. Then the deletion Γ \ e is the graph with vertices V and edges

E \ {e}. The contraction Γ/e is the graph obtained by identifying u and v

and deleting e. Formally this is defined as follows. Let ũ = ṽ = {u, v}, and

w̃ = {w} if w 6= u and w 6= v. Let Ṽ = {w̃ : w ∈ V }. Then Γ/e is the graph

(Ṽ , E \ {e}), where an edge f 6= e is incident with w̃ in Γ/e if f is incident

with w in Γ.

Notice that the number of k-colorings of Γ does not change by deleting

loops and a parallel edge. Hence the chromatic polynomial Γ and its sim-

plification Γ̄ are the same.

The following proposition is due to Foster. See the concluding note in [50].

Proposition 1.32. Let Γ = (V,E) be a simple graph. Let e be an edge of

Γ. Then the following deletion-contraction formula holds:

PΓ(k) = PΓ\e(k)− PΓ/e(k)

for all positive integers k.

Proof. Let u and v be the vertices of e. Then u 6= v, since the graph

is simple. Let γ be a k-coloring of Γ \ e. Then γ is also a coloring of Γ if

and only if γ(u) 6= γ(v). If γ(u) = γ(v), then consider the induced map γ̃

on Ṽ defined by γ̃(ũ) = γ(u) and γ̃(w̃) = γ(w) if w 6= u and w 6= v. The

map γ̃ gives a k-coloring of Γ/e. Conversely, every k-coloring of Γ/e gives

a k-coloring γ of Γ \ e such that γ(v) = γ(w). Therefore

PΓ\e(k) = PΓ(k) + PΓ/e(k).

This follows also from a more general deletion-contraction formula for ma-

troids that will be treated in Section 1.6.4 and Proposition 1.8.1. �

Let Γ = (V,E) be a graph. Suppose that V ′ ⊆ V and E′ ⊆ E and all the

endpoints of e′ in E′ are in V ′. Then Γ′ = (V ′, E′) is a graph and it is
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called a subgraph of Γ.

Two vertices u to v are connected by a path from u to v if there is a t-tuple of

mutually distinct vertices (v1, . . . , vt) with u = v1 and v = vt, and a (t−1)-

tuple of mutually distinct edges (e1, . . . , et−1) such that ei is incident with

vi and vi+1 for all 1 ≤ i < t. If moreover et is an edge that is incident with

u and v and distinct from ei for all i < t, then (e1, . . . , et−1, et) is called a

cycle. The length of the smallest cycle is called the girth of the graph and

is denoted by γ(Γ).

The graph is called connected if every two vertices are connected by a path.

A maximal connected subgraph of Γ is called a connected component of Γ.

The vertex set V of Γ is a disjoint union of subsets Vi and set of edges

E is a disjoint union of subsets Ei such that Γi = (Vi, Ei) is a connected

component of Γ. The number of connected components of Γ is denoted by

c(Γ).

Let Γ = (V,E) be a finite graph. Suppose that V consists of m elements

enumerated by v1, . . . , vm. Suppose that E consists of n elements enumer-

ated by e1, . . . , en. The incidence matrix I(Γ) is a m×n matrix with entries

aij defined by

aij =


1 if ej is incident with vi and vk for some i < k,

−1 if ej is incident with vi and vk for some i > k,

0 otherwise.

Suppose moreover that Γ is simple. Then AΓ is the arrangement

(H1, . . . ,Hn) of hyperplanes where Hj = Xi − Xk if ej is incident with

vi and vk with i < k. An arrangement A is called graphic if A is isomorphic

with AΓ for some graph Γ.

The graph code of Γ over Fq is the Fq-linear code that is generated by the

rows of the incidence matrix I(Γ). The cycle code CΓ of Γ is the dual of the

graph code of Γ.

Let Γ be a finite graph without loops. Then the arrangement AΓ is isomor-

phic with ACΓ .

Proposition 1.33. Let Γ be a finite graph. Then CΓ is a code with param-

eters [n, k, d], where n = |E|, k = |E| − |V |+ c(Γ) and d = γ(Γ).
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Proof. See [46, Prop. 4.3] �

Let M = (E, I) be a matroid. A subset C of E is called a circuit if it is

dependent and all its proper subsets are independent. A circuit of the dual

matroid M⊥ is called a cocircuit of M .

Proposition 1.34. Let C be the collection of circuits of a matroid. Then

(C.1) ∅ 6∈ C.

(C.2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

(C.3) If C1, C2 ∈ C and C1 6= C2 and x ∈ C1 ∩C2, then there exists a C3 ∈ C
such that C3 ⊆ (C1 ∪ C2) \ {x}.

Proof. See [35, Lemma 1.1.3]. �

Condition (C.3) is called the circuit elimination axiom. The converse of

Proposition 1.34 holds.

Proposition 1.35. Let C be a collection of subsets of a finite set E that

satisfies the conditions (C.1), (C.2) and (C.3). Let I be the collection of all

subsets of E that contain no member of C. Then (E, I) is a matroid with C
as its collection of circuits.

Proof. See [35, Theorem 1.1.4]. �

Proposition 1.36. Let Γ = (V,E) be a finite graph. Let C the collection

of all subsets {e1, . . . , et} such that (e1, . . . , et) is a cycle in Γ. Then C is

the collection of circuits of a matroid MΓ on E. This matroid is called the

cycle matroid of Γ.

Proof. See [35, Proposition 1.1.7]. �

Loops in Γ correspond one-to-one to loops in MΓ. Two edges that are no

loops, are parallel in Γ if and only if they are parallel in MΓ. So Γ is simple

if and only if MΓ is simple. Let e in E. Then e is an isthmus in the graph

Γ if and only is e is an isthmus in the matroid MΓ.

A matroid M is called graphic if M is isomorphic with MΓ for some graph

Γ, and it is called cographic if M⊥ is graphic. If Γ is a planar graph, then

the matroid MΓ is graphic by definition but it is also cographic.

Let Γ be a finite graph with incidence matrix I(Γ). This is a generator ma-

trix for CΓ over a field F. Suppose that F is the binary field. Look at all the
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columns indexed by the edges of a cycle of Γ. Since every vertex in a cycle

is incident with exactly two edges, the sum of these columns is zero and

therefore they are dependent. Removing a column gives an independent set

of vectors. Hence the cycles in the matroid MCΓ
coincide with the cycles in

Γ. Therefore MΓ is isomorphic with MCΓ . One can generalize this argument

for any field. Hence graphic matroids are representable over any field.

The matroids of the binary Hamming [7, 4, 3] code is not graphic and not

cographic. Clearly the matroids MK5
and MK3,3

are graphic by definition,

but they are not cographic. Tutte [56] found a classification for graphic

matroids.

1.6.3. The weight enumerator and the Tutte polynomial

See [1, 26, 57–63] for references of this section.

Definition 1.3. Let M = (E, I) be a matroid. Then the Whitney rank

generating function RM (X,Y ) is defined by

RM (X,Y ) =
∑
J⊆E

Xr(E)−r(J)Y |J|−r(J)

and the Tutte-Whitney or Tutte polynomial by

tM (X,Y ) =
∑
J⊆E

(X − 1)r(E)−r(J)(Y − 1)|J|−r(J) .

In other words,

tM (X,Y ) = RM (X − 1, Y − 1).

Whitney [50] defined the coefficients mij of the polynomial RM (X,Y ) such

that

RM (X,Y ) =

r(M)∑
i=0

|M |∑
j=0

mijX
iY j ,

but he did not define the polynomial RM (X,Y ) as such. It is clear that

these coefficients are nonnegative, since they count the number of elements

of certain sets. The coefficients of the Tutte polynomial are also nonneg-

ative, but this is not a trivial fact, it follows from the counting of certain

internal and external bases of a matroid. See [64].
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As we have seen, we can interpret a linear [n, k] code C over Fq as a matroid

via the columns of a generator matrix G.

Proposition 1.37. Let C be a [n, k] code over Fq. Then the Tutte polyno-

mial tC associated with the matroid MC of the code C is

tC(X,Y ) =

n∑
t=0

∑
|J|=t

(X − 1)l(J)(Y − 1)l(J)−(k−t) .

Proof. This follows from l(J) = k−r(J) by Lemma 1.1 and r(M) = k. �

This formula and Proposition 1.24 suggest the next connection between the

weight enumerator and the Tutte polynomial. Greene [26] was the first to

notice this connection.

Theorem 1.9. Let C be a [n, k] code over Fq with generator matrix G.

Then the following holds for the Tutte polynomial and the extended weight

enumerator:

WC(X,Y, T ) = (X − Y )kY n−k tC

(
X + (T − 1)Y

X − Y
,
X

Y

)
.

Proof. By using Proposition 1.37 about the Tutte polynomial, rewriting,

and Proposition 1.24 we get

(X − Y )kY n−k tC

(
X + (T − 1)Y

X − Y
,
X

Y

)
= (X − Y )kY n−k

n∑
t=0

∑
|J|=t

(
TY

X − Y

)l(J)(
X − Y
Y

)l(J)−(k−t)

= (X − Y )kY n−k
n∑

t=0

∑
|J|=t

T l(J)Y k−t(X − Y )−(k−t)

=

n∑
t=0

∑
|J|=t

T l(J)(X − Y )tY n−t

= WC(X,Y, T ).
�

We use the extended weight enumerator here, because extending a code

does not change the generator matrix and therefore not the matroid G. The

converse of this theorem is also true: the Tutte polynomial is completely

defined by the extended weight enumerator.
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Theorem 1.10. Let C be a [n, k] code over Fq. Then the following holds

for the extended weight enumerator and the Tutte polynomial:

tC(X,Y ) = Y n(Y − 1)−kWC(1, Y −1, (X − 1)(Y − 1)) .

Proof. The proof of this theorem goes analogous to the proof of the

previous theorem.

Y n(Y − 1)−kWC(1, Y −1, (X − 1)(Y − 1))

= Y n(Y − 1)−k
n∑

t=0

∑
|J|=t

((X − 1)(Y − 1))
l(J)

(1− Y −1)tY −(n−t)

=

n∑
t=0

∑
|J|=t

(X − 1)l(J)(Y − 1)l(J)Y −t(Y − 1)tY −(n−k)Y n(Y − 1)−k

=

n∑
t=0

∑
|J|=t

(X − 1)l(J)(Y − 1)l(J)−(k−t)

= tC(X,Y ).
�

We see that the Tutte polynomial depends on two variables, while the ex-

tended weight enumerator depends on three variables. This is no problem,

because the weight enumerator is given in its homogeneous form here: we

can view the extended weight enumerator as a polynomial in two variables

via WC(Z, T ) = WC(1, Z, T ).

Greene [26] already showed that the Tutte polynomial determines the

weight enumerator, but not the other way round. By using the extended

weight enumerator, we get a two-way equivalence and the proof reduces to

rewriting.

We can also give expressions for the generalized weight enumerator in terms

of the Tutte polynomial, and the other way round. The first formula was

found by Britz [61] and independently by Jurrius [1].

Theorem 1.11. For the generalized weight enumerator of a [n, k] code C

and the associated Tutte polynomial we have that W
(r)
C (X,Y ) is equal to

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r
j)(X − Y )kY n−k tC

(
X + (qj − 1)Y

X − Y
,
X

Y

)
.
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And, conversely,

tC(X,Y ) = Y n(Y − 1)−k
k∑

r=0

r−1∏
j=0

((X − 1)(Y − 1)− qj)

W
(r)
C (1, Y −1) .

Proof. For the first formula, use Theorems 1.7 and 1.9. Use Theorems

1.6 and 1.10 for the second formula. �

1.6.4. Deletion and contraction of matroids

Let M = (E, I) be a matroid of rank k. Let e be an element of E. Then

the deletion M \ e is the matroid on the set E \ {e} with independent sets

of the form I \ {e} where I is independent in M . The contraction M/e is

the matroid on the set E \ {e} with independent sets of the form I \ {e}
where I is independent in M and e ∈ I.

Let C be a code with reduced generator matrix G at position e. So a =

(1, 0, . . . , 0)T is the column of G at position e. Then M \ e = MG\a and

M/e = MG/a. A puncturing-shortening formula for the extended weight

enumerator is given in Proposition 1.26. By virtue of the fact that the

extended weight enumerator and the Tutte polynomial of a code determine

each other by the Theorems 1.9 and 1.10, one expects that an analogous

generalization for the Tutte polynomial of matroids holds.

Proposition 1.38. Let M = (E, I) be a matroid. Let e ∈ E that is not a

loop and not an isthmus. Then the following deletion-contraction formula

holds:

tM (X,Y ) = tM\e(X,Y ) + tM/e(X,Y ).

Proof. See [25, 53, 65, 66]. �

Let M be a graphic matroid. So M = MΓ for some finite graph Γ. Let e be

an edge of Γ, then M \ e = MΓ\e and M/e = MΓ/e.

1.6.5. MacWilliams type property for duality

For both codes and matroids we defined the dual structure. These objects

obviously completely define there dual. But how about the various poly-

nomials associated to a code and a matroid? We know from Example 1.30

that the weight enumerator is a less strong invariant for a code then the
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code itself: this means there are non-equivalent codes with the same weight

enumerator. So it is a priori not clear that the weight enumerator of a code

completely defines the weight enumerator of its dual code. We already saw

that there is in fact such a relation, namely the MacWilliams identity in

Theorem 1.2. We will give a proof of this relation by considering the more

general question for the extended weight enumerator. We will prove the

MacWilliams identities using the Tutte polynomial. We do this because of

the following simple and very useful relation between the Tutte polynomial

of a matroid and its dual.

Theorem 1.12. Let tM (X,Y ) be the Tutte polynomial of a matroid M ,

and let M⊥ be the dual matroid. Then

tM (X,Y ) = tM⊥(Y,X).

Proof. Let M be a matroid on the set E. Then M⊥ is a matroid on the

same set. In Proposition 1.30 we proved r⊥(J) = |J | − r(E) + r(E \ J). In

particular, we have r⊥(E) + r(E) = |E|. Substituting this relation into the

definition of the Tutte polynomial for the dual code, gives

tM⊥(X,Y ) =
∑
J⊆E

(X − 1)r
⊥(E)−r⊥(J)(Y − 1)|J|−r

⊥(J)

=
∑
J⊆E

(X − 1)r
⊥(E)−|J|−r(E\J)+r(E)(Y − 1)r(E)−r(E\J)

=
∑
J⊆E

(X − 1)|E\J|−r(E\J)(Y − 1)r(E)−r(E\J)

= tM (Y,X)

In the last step, we use that the summation over all J ⊆ E is the same as

a summation over all E \ J ⊆ E. This proves the theorem. �

If we consider a code as a matroid, then the dual matroid is the dual

code. Therefore we can use the above theorem to prove the MacWilliams

relations. Greene [26] was the first to use this idea, see also Brylawsky and

Oxley [67].

Theorem 1.13 (MacWilliams). Let C be a code and let C⊥ be its dual.

Then the extended weight enumerator of C completely determines the ex-

tended weight enumerator of C⊥ and vice versa, via the following formula:

WC⊥(X,Y, T ) = T−kWC(X + (T − 1)Y,X − Y, T ).
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Proof. Let G be the matroid associated to the code. Using the previous

theorem and the relation between the weight enumerator and the Tutte

polynomial, we find

T−kWC(X + (T − 1)Y,X − Y, T )

= T−k(TY )k(X − Y )n−k tC

(
X

Y
,
X + (T − 1)Y

X − Y

)
= Y k(X − Y )n−k tC⊥

(
X + (T − 1)Y

X − Y
,
X

Y

)
= WC⊥(X,Y, T ).

Notice in the last step that dimC⊥ = n− k, and n− (n− k) = k. �

We can use the relations in Theorems 1.6 and 1.7 to prove the MacWilliams

identities for the generalized weight enumerator.

Theorem 1.14. Let C be a code and let C⊥ be its dual. Then the general-

ized weight enumerators of C completely determine the generalized weight

enumerators of C⊥ and vice versa, via the following formula:

W
(r)

C⊥
(X,Y ) =

r∑
j=0

j∑
l=0

(−1)r−j
q(

r−j
2 )−j(r−j)−l(j−l)−jk

〈r − j〉q〈j − l〉q
W

(l)
C (X+(qj−1)Y,X−Y ).

Proof. We write the generalized weight enumerator in terms of the ex-

tended weight enumerator, use the MacWilliams identities for the extended

weight enumerator, and convert back to the generalized weight enumerator.

W
(r)

C⊥
(X,Y ) =

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j

2 ) WC⊥(X,Y, qi)

=

r∑
j=0

(−1)r−j
q(

r−j
2 )−j(r−j)

〈j〉q〈r − j〉q
q−jkWc(X + (qj − 1)Y,X − Y, qj)

=

r∑
j=0

(−1)r−j
q(

r−j
2 )−j(r−j)−jk

〈j〉q〈r − j〉q

×
j∑

l=0

〈j〉q
ql(j−l)〈j − l〉q

W
(l)
C (X + (qj − 1)Y,X − Y )

=

r∑
j=0

j∑
l=0

(−1)r−j
q(

r−j
2 )−j(r−j)−l(j−l)−jk

〈r − j〉q〈j − l〉q

×W (l)
C (X + (qj − 1)Y,X − Y ). �
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This theorem was proved by Kløve [68], although the proof uses only half of

the relations between the generalized weight enumerator and the extended

weight enumerator. Using both makes the proof much shorter.

1.7. Posets and lattices

In this section we consider the theory of posets and lattices and the Möbius

function. Geometric lattices are defined and its connection with matroids

is given. See [30, 69–72].

1.7.1. Posets, the Möbius function and lattices

Let L be a set and ≤ a relation on L such that:

(PO.1) x ≤ x, for all x in L (reflexive).

(PO.2) If x ≤ y and y ≤ x, then x = y, for all x, y ∈ L (anti-symmetric).

(PO.3) If x ≤ y and y ≤ z, then x ≤ z, for all x, y and z in L (transitive).

The pair (L,≤), or just L, is called a poset with partial order ≤ on the set L.

Define x < y if x ≤ y and x 6= y. The elements x and y in L are comparable

if x ≤ y or y ≤ x. A poset L is called a linear order if every two elements

are comparable. Define Lx = {y ∈ L : x ≤ y} and Lx = {y ∈ L : y ≤ x}
and the the interval between x and y by [x, y] = {z ∈ L : x ≤ z ≤ y}.
Notice that [x, y] = Lx ∩ Ly.

Let (L,≤) be a poset. A chain of length r from x to y in L is a sequence of

elements x0, x1, . . . , xr in L such that

x = x0 < x1 < · · · < xr = y.

Let r ≥ 0 be an integer. Let x, y ∈ L. Then cr(x, y) denotes the number of

chains of length r from x to y. Now cr(x, y) is finite if L is finite. The poset

is called locally finite if cr(x, y) is finite for all x, y ∈ L and every integer

r ≥ 0.

Proposition 1.39. Let L be a locally finite poset. Let x ≤ y in L. Then

(N.1) c0(x, y) = 0 if x and y are not comparable.

(N.2) c0(x, x) = 1, cr(x, x) = 0 for all r > 0 and c0(x, y) = 0 if x < y.

(N.3) cr+1(x, y) =
∑

x≤z<y cr(x, z) =
∑

x<z≤y cr(z, y).
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Proof. Statements (N.1) and (N.2) are trivial. Let z < y and x = x0 <

x1 < · · · < xr = z a chain of length r from x to z, then x = x0 < x1 <

· · · < xr < xr+1 = y is a chain of length r + 1 from x to y, and every

chain of length r + 1 from x to y is obtained uniquely in this way. Hence

cr+1(x, y) =
∑

x≤z<y cr(x, z). The last equality is proved similarly. �

Definition 1.4. The Möbius function of L, denoted by µL or µ is defined

by

µ(x, y) =

∞∑
r=0

(−1)rcr(x, y).

Proposition 1.40. Let L be a locally finite poset. Then for all x, y ∈ L:

(M.1) µ(x, y) = 0 if x and y are not comparable.

(M.2) µ(x, x) = 1.

(M.3) If x < y, then
∑

x≤z≤y µ(x, z) =
∑

x≤z≤y µ(z, y) = 0.

(M.4) If x < y, then µ(x, y) = −
∑

x≤z<y µ(x, z) = −
∑

x<z≤y µ(z, y).

Proof.

(M.1) and (M.2) follow from (N.1) and (N.2), respectively, of Proposition

1.39. (M.3) is clearly equivalent with (M.4). If x < y, then c0(x, y) = 0. So

µ(x, y) =

∞∑
r=1

(−1)rcr(x, y)

=

∞∑
r=0

(−1)r+1cr+1(x, y)

= −
∞∑
r=0

(−1)r
∑

x≤z<y

cr(x, z)

= −
∑

x≤z<y

∞∑
r=0

(−1)rcr(x, z)

= −
∑

x≤z<y

µ(x, z).

The first and last equality use the definition of µ. The second equality starts

counting at r = 0 instead of r = 1, the third uses (N.3) of Proposition 1.39

and in the fourth the order of summation is interchanged. �

Remark 1.5. (M.2) and (M.4) of Proposition 1.40 can be used as an al-

ternative way to compute µ(x, y) by induction.
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Let L be a poset. If L has an element 0L such that 0L is the unique minimal

element of L, then 0L is called the minimum of L. Similarly 1L is called

the maximum of L if 1L is the unique maximal element of L. If x, y ∈ L
and x ≤ y, then the interval [x, y] has x as minimum and y as maximum.

Suppose that L has 0L and 1L as minimum and maximum, also denoted by

0 and 1, respectively. Then 0 ≤ x ≤ 1 for all x ∈ L. Define µ(x) = µ(0, x)

and µ(L) = µ(0, 1) if L is finite.

Let L be a locally finite poset with a minimum element. Let A be an abelian

group and f : L→ A a map from L to A. The sum function f̂ of f is defined

by

f̂(x) =
∑
y≤x

f(y).

Define similarly the sum function f̌ of f by f̌(x) =
∑

x≤y f(y) if L is a

locally finite poset with a maximum element.

A poset L is locally finite if and only if [x, y] is finite for all x ≤ y in L. So

[0, x] is finite if L is a locally finite poset with minimum element 0. Hence

the sum function f̂(x) is well-defined, since it is a finite sum of f(y) in A

with y in [0, x]. In the same way f̌(x) is well-defined, since [x, 1] is finite.

Theorem 1.15 (Möbius inversion formula). Let L be a locally finite

poset with a minimum element. Then

f(x) =
∑
y≤x

µ(y, x)f̂(y).

Similarly f(x) =
∑

x≤y µ(x, y)f̌(y) if L is a locally finite poset with a max-

imum element.

Proof. Let x be an element of L. Then∑
y≤x

µ(y, x)f̂(y) =
∑
y≤x

∑
z≤y

µ(y, x)f(z)

=
∑
z≤x

f(z)
∑

z≤y≤x

µ(y, x)

= f(x)µ(x, x) +
∑
z<x

f(z)
∑

z≤y≤x

µ(y, x)

= f(x)
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The first equality uses the definition of f̂(y). In the second equality the order

of summation is interchanged. In the third equality the first summation is

split in the parts z = x and z < x, respectively. Finally µ(x, x) = 1 and the

second summation is zero for all z < x, by Proposition 1.40.

The proof of the second equality is similar. �

Example 1.33. Let f(x) = 1 if x = 0 and f(x) = 0 otherwise. Then

the sum function f̂(x) =
∑

y≤x f(y) is constant 1 for all x. The Möbius

inversion formula gives that∑
y≤x

µ(x) =

{
1 if x = 0,

0 if x > 0,

which is a special case of Proposition 1.40.

Remark 1.6. Let (L,≤) be a poset. Let ≤R be the reverse relation on L

defined by x ≤R y if and only if y ≤ x. Then (L,≤R) is a poset. Suppose that

(L,≤) is locally finite with Möbius function µ. Then the number of chains

of length r from x to y in (L,≤R) is the same as the number of chains of

length r from y to x in (L,≤). Hence (L,≤R) is locally finite with Möbius

function µR such that µR(x, y) = µ(y, x). If (L,≤) has minimum 0L or

maximum 1L, then (L,≤R) has minimum 1L or maximum 0L, respectively.

Definition 1.5. Let L be a poset. Let x, y ∈ L. Then y is called a cover

of x if x < y, and there is no z such that x < z < y. The Hasse diagram of

L is a directed graph that has the elements of L as vertices, and there is a

directed edge from y to x if and only if y is a cover of x.

Example 1.34. Let L = Z be the set of integers with the usual linear

order. The Hasse diagram of this poset looks as follows:

. . . −→ n+ 1 −→ n −→ n− 1 −→ . . . −→ 1 −→ 0 −→ −1 −→ . . .

Let x, y ∈ L and x ≤ y. Then c0(x, x) = 1, c0(x, y) = 0 if x < y, and

cr(x, y) =
(
y−x−1
r−1

)
for all r ≥ 1. So L infinite and locally finite. Furthermore

µ(x, x) = 1, µ(x, x+ 1) = −1 and µ(x, y) = 0 if y > x+ 1.

Let L be a poset. Let x, y ∈ L. Then x and y have a least upper bound if

there is a z ∈ L such that x ≤ z and y ≤ z, and if x ≤ w and y ≤ w, then

z ≤ w for all w ∈ L. If x and y have a least upper bound, then such an

element is unique and it is called the join of x and y and denoted by x∨ y.

Similarly the greatest lower bound of x and y is defined. If it exists, then it
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is unique and it is called the meet of x and y and denoted by x∧ y. A poset

L is called a lattice if x ∨ y and x ∧ y exist for all x, y ∈ L.

Remark 1.7. Let (L,≤) be a finite poset with maximum 1 such that x∧y
exists for all x, y ∈ L. The collection {z : x ≤ z, y ≤ z} is finite and not

empty, since it contains 1. The meet of all the elements in this collection is

well defined and is given by

x ∨ y =
∧
{z : x ≤ z, y ≤ z}.

Hence L is a lattice. Similarly L is a lattice if L is a finite poset with

minimum 0 such that x ∨ y exists for all x, y ∈ L, since x ∧ y =
∨
{z : z ≤

x, z ≤ y}.

Example 1.35. Let L be the collection of all finite subsets of a given set

X . Let ≤ be defined by the inclusion, that means I ≤ J if and only if I ⊆ J .

Then 0L = ∅, and L has a maximum if and only if X is finite in which case

1L = X . For X = {a, b, c, d} the Hasse diagram of the poset is given in

Figure 1.10.

{a, b, c, d}

{a, b, c}
zz

{a, b}
��

{a}
��

∅
$$

{b}
''

��

{a, c}
��

��
{c}
''

��

{b, c}
''

�� ��

{a, b, d}
��

ww
{a, d}
��

��
{d}
''

zz

{b, d}
''

ww ��

{a, c, d}
��

ww ��
{c, d}
''

ww ��

{b, c, d}
$$

�� �� ��

Fig. 1.10. The Hasse diagram of the poset of all subsets of {a, b, c, d}
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Let I, J ∈ L and I ≤ J . Then |I| ≤ |J | <∞. Let m = |J | − |I|. Then

cr(I, J) =
∑

m1<m2<···<mr−1<m

(
m2

m1

)(
m3

m2

)
· · ·
(

m

mr−1

)
.

Hence L is locally finite. L is finite if and only if X is finite. Furthermore

I ∨ J = I ∪ J and I ∧ J = I ∩ J . So L is a lattice. Using Remark 1.5 we

see that µ(I, J) = (−1)|J|−|I| if I ≤ J . This is much easier than computing

µ(I, J) by means of Definition 1.4.

Example 1.36. Let X = [n]. Let k be an integer between 0 and n. Let

Lk = {X} and Li be the collection of all subsets of X of size i for all

i < k. Let the partial order be given by the inclusion. Then L is a poset

and µ(I, J) = (−1)|J|−|I| if I ≤ J and |J | < k as in Example 1.35, and

µ(I,X ) = −
∑

I≤J<X (−1)|J|−|I| for all I < X by Proposition 1.40.

Example 1.37. Now suppose again that X = [n]. Let L be the poset of

subsets of X . Let A1, . . . , An be a collection of subsets of a finite set A.

Define for a subset J of X

AJ =
⋂
j∈J

Aj and f(J) = |AJ \

(⋃
I<J

AI

)
|.

Then AJ is the disjoint union of the subsets AI \ (
⋃

K<I AK) for all I ≤ J .

Hence the sum function is equal to

f̂(J) =
∑
I≤J

f(I) =
∑
I≤J

|AI \

( ⋃
K<I

AK

)
| = |AJ |.

Möbius inversion gives that

|AJ \

(⋃
I<J

AI

)
| =

∑
I≤J

(−1)|J|−|I||AI |,

which is called the principle of inclusion/exclusion.

Example 1.38. A variant of the principle of inclusion/exclusion is given as

follows. Let H1, . . . ,Hn be a collection of subsets of a finite set H. Let L be

the poset of all intersections of the Hj with the reverse inclusion as partial

order. Then H is the minimum of L and H1 ∩ · · · ∩Hn is the maximum of

L. Let x ∈ L. Define

f(x) = |x \

(⋃
x<y

y

)
|.
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Then

f̌(x) =
∑
x≤y

f(y) =
∑
x≤y

|y \

(⋃
y<z

z

)
| = |x|.

Hence

|x \

(⋃
x<y

y

)
| =

∑
x≤y

µ(x, y)|y|.

Example 1.39. Let L = N be the set of positive integers with the di-

visibility relation as partial order. Then 0L = 1 is the minimum of L,

it is locally finite and it has no maximum. Now m ∨ n = lcm(m,n) and

m ∧ n = gcd(m,n). Hence L is a lattice. By Remark 1.5 we see that

µ(n) =


1 if n = 1;

(−1)r if n is the product of r mutually distinct primes;

0 if n is divisible by the square of a prime.

Hence µ(n) is the classical Möbius function. Furthermore, µ(d, n) = µ(n
d )

if d|n. Let

ϕ(n) = |{i ∈ N : gcd(i, n) = 1}|

be Euler’s ϕ function. Define

Vd = {i ∈ [n] : gcd(i, n) = n
d }

for d|n. Then

{ i · nd : i ∈ [d] , gcd(i, d) = 1 } = Vd

so |Vd| = ϕ(d). Now [n] is the disjoint union of the subsets Vd with d|n.

Hence the sum function of ϕ(n) is given by

ϕ̂(n) =
∑
d|n

ϕ(d) = n.

Therefore by Möbius inversion

ϕ(n) =
∑
d|n

µ(d)
n

d
.

Example 1.40. Consider the poset L of Example 1.39 with the divisibility

as partial order. Let Irrq(n) be the number of irreducible monic polynomials

over Fq of degree n. Define f(d) = d · Irrq(d). Then the sum function
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f̂(n) =
∑

d|n f(d) is equal to qn. See [73, Corollary 3.21]. The Möbius

inversion formula of Theorem 1.15 implies that

Irrq(n) =
1

n

∑
d|n

µ
(n
d

)
qd.

Let (L1,≤1) and (L2,≤2) be posets. A map ϕ : L1 → L2 is called monotone

if ϕ(x) ≤2 ϕ(y) for all x ≤1 y in L1. The map ϕ is called strictly monotone

if ϕ(x) <2 ϕ(y) for all x <1 y in L1. The map is called an isomorphism of

posets if it is strictly monotone and there exists a strictly monotone map

ψ : L2 → L1 that is the inverse of ϕ. The posets are called isomorphic if

there is an isomorphism of posets between them.

If ϕ : L1 → L2 is an isomorphism between locally finite posets with a

minimum, then µ2(ϕ(x), ϕ(y)) = µ1(x, y) for all x, y in L1. If (L1,≤1) and

(L2,≤2) are isomorphic posets and L1 is a lattice, then L2 is also a lattice.

Example 1.41. Let n be a positive integer that is the product of r mutually

distinct primes p1, . . . , pr. Let L1 be the set of all positive integers that

divide n with divisibility as partial order ≤1 as in Example 1.39. Let L2 be

the collection of all subsets of [r] with the inclusion as partial order ≤2 as in

Example 1.35. Define the maps ϕ : L1 → L2 and ψ : L2 → L1 by ϕ(d) = {i :

pi divides n} and ψ(x) =
∏

i∈x pi. Then ϕ and ψ are strictly monotone and

they are inverses of each other. Hence L1 and L2 are isomorphic lattices.

1.7.2. Geometric lattices

Let (L,≤) be a lattice without infinite chains. Then L has a minimum and

a maximum. Let L be a lattice with minimum 0. An atom is an element

a ∈ L that is a cover of 0. A lattice is called atomic if for every x > 0 in L

there exist atoms a1, . . . , ar such that x = a1 ∨ · · · ∨ ar, and the minimum

possible r is called the rank of x and is denoted by rL(x) or r(x) for short.

A lattice is called semimodular if for all mutually distinct x, y ∈ L, x ∨ y
covers x and y if there exists a z such that x and y cover z. A lattice is

called modular if x∨ (y ∧ z) = (x∨ y)∧ z for all x, y, z ∈ L such that x ≤ z.
A lattice L is called a geometric lattice if it is atomic and semimodular and

has no infinite chains. If L is a geometric lattice L, then it has a minimum

and a maximum and r(1) is called the rank of L and is denoted by r(L).

Example 1.42. Let L be the collection of all finite subsets of a given set

X as in Example 1.35. The atoms are the singleton sets, that is subsets
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consisting of exactly one element of X . Every x ∈ L is the finite union of

its singleton subsets. So L is atomic and r(x) = |x|. Now y covers x if and

only if there is an element Q not in x such that y = x ∪ {Q}. If x 6= y

and x and y both cover z, then there is an element P not in z such that

x = z ∪ {P}, and there is an element Q not in z such that y = z ∪ {Q}.
Now P 6= Q, since x 6= y. Hence x ∨ y = z ∪ {P,Q} covers x and y. Hence

L is semimodular. In fact L is modular. L is locally finite. L is a geometric

lattice if and only if X is finite.

Example 1.43. Let L be the set of positive integers with the divisibility

relation as in Example 1.39. The atoms of L are the primes. But L is

not atomic, since a square is not the join of finitely many elements. L is

semimodular. The interval [1, n] in L is a geometric lattice if and only if n

is square free. If n is square free and m ≤ n, then r(m) = r if and only if

m is the product of r mutually distinct primes.

Let L be a geometric lattice. Let x, y ∈ L and x ≤ y. The chain x =

y0 < y1 < · · · < ys = y from x to y is called an extension of the chain

x = x0 < x1 < · · · < xr = y if {x0, x1, . . . , xr} is a subset of {y0, y1, . . . , ys}.
A chain from x to y is called maximal if there is no extension to a longer

chain from x to y.

Proposition 1.41. Let L be a geometric lattice. Then for all x, y ∈ L:

(GL.1) If x < y, then r(x) < r(y) (strictly monotone)

(GL.2) r(x ∨ y) + r(x ∧ y) ≤ r(x) + r(y) (semimodular inequality)

(GL.3) If x ≤ y, then every chain from x to y can be extended to a maximal

chain with the same end points, and all such maximal chains have the

same length r(y)− r(x). (Jordan-Hölder property).

Proof. See [30, Prop. 3.3.2] and [72, Prop. 3.7]. �

Let L be an atomic lattice. Then L is semimodular if and only if the semi-

modular inequality (GL.2) holds for all x, y ∈ L. And L is modular if and

only if the modular equality holds for all x, y ∈ L:

r(x ∨ y) + r(x ∧ y) = r(x) + r(y).

Then the Hasse diagram of L is a graph that has the elements of L as ver-

tices. If x, y ∈ L, x < y and r(y) = r(x) + 1, then x and y are connected by

an edge. So only elements between two consecutive levels Lj and Lj+1 are

connected by an edge. The Hasse diagram of L considered as a poset as in

Definition 1.5 is the directed graph with an arrow from y to x if x, y ∈ L,
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x < y and r(y) = r(x) + 1.

abcd

abc

a

∅

b c

ad

d

bd cd

Fig. 1.11. The Hasse diagram of the geometric lattice in Example 1.48

Let L be a geometric lattice. Then Lx is a geometric lattice with x as

minimum element and of rank rL(1) − rL(x), and µLx
(y) = µ(x, y) and

rLx(y) = rL(y)− rL(x) for all x ∈ L and y ∈ Lx. Similar remarks hold for

Lx and [x, y].

Example 1.44. Let L be the collection of all linear subspaces of a given

finite dimensional vector space V over a field F with the inclusion as partial

order. Then 0L = {0} is the minimum and 1L = V is the maximum of L.

The partial order L is locally finite if and only if L is finite if and only if

the field F is finite. Let x and y be linear subspaces of V . Then x ∩ y the

intersection of x and y is the largest linear subspace that is contained in x

and y. So x ∧ y = x ∩ y. The sum x+ y of x and y is by definition the set

of elements a+ b with a in x and b in y. Then x+ y is the smallest linear

subspace containing both x and y. Hence x ∨ y = x + y. So L is a lattice.

The atoms are the one dimensional linear subspaces. Let x be a subspace

of dimension r over F. So x is generated by a basis g1, . . . ,gr. Let ai be the

one dimensional subspace generated by gi. Then x = a1 ∨ · · · ∨ ar. Hence

L is atomic and r(x) = dim(x). Moreover L is modular, since

dim(x ∩ y) + dim(x+ y) = dim(x) + dim(y)
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for all x, y ∈ L. Furthermore L has no infinite chains, since V is finite

dimensional. Therefore L is a modular geometric lattice.

Example 1.45. Let F be a field. Let V = (v1, . . . ,vn) be an n-tuple of

nonzero vectors in Fk. Let L = L(V) be the collection of all linear subspaces

of Fk that are generated by subsets of V with inclusion as partial order. So L

is finite and a fortiori locally finite. By definition {0} is the linear subspace

space generated by the empty set. Then 0L = {0} and 1L is the subspace

generated by all v1, . . . ,vn. Furthermore L is a lattice with x ∨ y = x + y

and

x ∧ y =
∨
{z : z ≤ x, z ≤ y}

by Remark 1.7. Let aj be the linear subspace generated by vj . Then

a1, . . . , an are the atoms of L. Let x be the subspace generated by {vj : j ∈
J}. Then x =

∨
j∈J aj . If x has dimension r, then there exists a subset I of

J such that |I| = r and x =
∨

i∈I ai. Hence L is atomic and r(x) = dim(x).

Now x ∧ y ⊆ x ∩ y, so

r(x ∨ y) + r(x ∧ y) ≤ dim(x+ y) + dim(x ∩ y) = r(x) + r(y).

Hence the semimodular inequality holds and L is a geometric lattice. In

most cases L is not modular.

Example 1.46. Let F be a field. Let A = (H1, . . . ,Hn) be an arrangement

over F of hyperplanes in the vector space V = Fk. Let L = L(A) be the

collection of all nonempty intersections of elements of A. By definition Fk

is the empty intersection. Define the partial order ≤ by

x ≤ y if and only if y ⊆ x.

Then V is the minimum element and {0} is the maximum element. Fur-

thermore

x ∨ y = x ∩ y if x ∩ y 6= ∅, and x ∧ y =
⋂
{z : x ∪ y ⊆ z }.

Suppose that A is a central arrangement. Then x ∩ y is nonempty for all

x, y ∈ L. So x ∨ y and x ∧ y exist for all x, y ∈ L, and L is a lattice.

Let vj = (v1j , . . . , vkj) be a nonzero vector such that
∑k

i=1 vijXi = 0 is

a homogeneous equation of Hj . Let V = (v1, . . . ,vn). Consider the map

ϕ : L(V)→ L(A) defined by

ϕ(x) =
⋂
j∈J

Hj if x is the subspace generated by {vj : j ∈ J}.
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Now x ⊂ y if and only if ϕ(y) ⊂ ϕ(x) for all x, y ∈ L(V). So ϕ is a strictly

monotone map. Furthermore ϕ is a bijection and its inverse map is also

strictly monotone. Hence L(V) and L(A) are isomorphic lattices. Therefore

L(A) is also a geometric lattice.

Example 1.47. Let G be a generator matrix of the simplex code Sr(q) of

Example 1.22. Let A = AG be the arrangement of the matrix G. Then the

projective hyperplanes of the arrangement of A are all the (qr − 1)/(q− 1)

hyperplanes of Pr−1(Fq). The geometric lattice L(A) consists of all possible

intersections of these hyperplanes, so they are all projective subspaces of

Pr−1(Fq) with the reverse inclusion as partial order. This geometric order is

self dual, that means that it is isomorphic under map that sends points to

hyperplanes with the inclusion and the reverse inclusion as partial orders.

In this way we see that the geometric lattice of the simplex code Sr(q)

is isomorphic with the geometric lattice of all linear subspaces of a given

vector space V of Example 1.44 with F = Fq and V = Fr
q.

Example 1.48. Consider the following matrix over a field F.1 1 0 0

0 0 0 1

0 1 1 0

 .

Denote the columns of the matrix by a, b, c, d respectively. We can interpret

the columns either as vectors in F3, or as the coefficients of hyperplanes in

F3. The corresponding lattices will be isomorphic by Examples 1.45 and

1.46. The corresponding Hasse diagram is given in Figure 1.11.

1.7.3. Geometric lattices and matroids

The notion of a geometric lattice is “cryptomorphic” , that is almost equiv-

alent to the concept of a matroid. See [35, 63, 69, 72, 74].

Proposition 1.42. Let L be a finite geometric lattice. Let M(L) be the set

of all atoms of L. Let I(L) be the collection of all subsets I of M(L) such

that r(a1 ∨ · · · ∨ ar) = r if I = {a1, . . . , ar} is a collection of r atoms of L.

Then (M(L), I(L)) is a matroid.

Proof. The proof is left as an exercise. �

Let C be a projective code with generator matrix G. Then AG is an es-

sential simple arrangement with geometric lattice L(AG). Furthermore the
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matroids M(L(AG)) and MC are isomorphic.

Let M = (E, I) be a matroid. A k-flat of M is a maximal subset of E of

rank k. Let L(M) be the collection of all flats of M , it is called the lattice

of flats of M . Let J be a subset of E. Then the closure J̄ is by definition

the intersection of all flats that contain J . Flats of size k− 1 are sometimes

called hyperplanes, but in this chapter we will avoid this terminology.

The whole set E is a k-flat with k = r(M). If F1 and F2 are flats, then

F1 ∩ F2 is also a flat. Consider L(M) with the inclusion as partial order.

Then E is the maximum of L(M). and F1 ∩F2 = F1 ∧F2 for all F1 and F2

in L(M). Hence L(M) is indeed a lattice by Remark 1.7. Let J be a subset

of E, then J̄ is a flat, since it is a nonempty, finite intersection of flats. So

∅̄ is the minimum of L(M).

An element x in E is a loop if and only if x̄ = ∅̄. If x, y ∈ E are not loops,

then x and y are parallel if and only if x̄ = ȳ. Let Ē = {x̄ : x ∈M, x̄ 6= ∅̄}.
Let Ī = {Ī : I ∈ I, ∅̄ 6∈ Ī}. Then M̄ = (Ē, Ī) is a simple matroid.

Let G be a generator matrix of a code C. The simplified matrix Ḡ is the

matrix obtained from G by deleting all zero columns from G and all columns

that are a scalar multiple of a previous column. The simplified code C̄ of C

is the code with generator matrix Ḡ.

Remark 1.8. Let G be a generator matrix of a code C. The definition of

the simplified code C̄ by means of Ḡ does not depend on the choice of the

generator matrix G of C. The matroids M̄G and MḠ are isomorphic.

Let J be a subset of [n]. Then the closure J̄ is equal to the complement in

[n] of the support of C(J) and C(J) = C(J̄).

Proposition 1.43. Let M be a matroid. Then L(M) with the inclusion as

partial order is a geometric lattice and L(M) is isomorphic with L(M̄).

Proof. See [75] and [72, Theorem 3.8]. �

Example 1.49. The geometric lattice of the matroid Un,k is isomorphic

with the lattice consisting of [n] and all its subsets of size at most k − 1 of

Example 1.36.
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1.8. The characteristic polynomial

The characteristic polynomial of geometric lattices is defined. This is gener-

alized in two variable polynomials in two ways: the coboundary polynomial

and the Möbius polynomial. For simple matroids and codes the cobound-

ary polynomial is equivalent with the Tutte polynomial and the extended

weight enumerator. The Möbius polynomial contains information on the

number of minimal subcodes and codewords. The coboundary and Möbius

polynomial do not determine each other. This will be shown by examples

of three dimensional codes.

1.8.1. The characteristic and coboundary polynomial

Let L be a finite geometric lattice. The characteristic polynomial χL(T )

and the Poincaré polynomial πL(T ) of L are defined by:

χL(T ) =
∑
x∈L

µL(x)T r(L)−r(x) and πL(T ) =
∑
x∈L

µL(x)(−T )r(x).

The two variable characteristic polynomial or coboundary polynomial is de-

fined by

χL(S, T ) =
∑
x∈L

∑
x≤y∈L

µ(x, y)Sa(x)T r(L)−r(y),

where a(x) is the number of atoms a in L such that a ≤ x.

Now χL(1) = 0 if and only if L consists of one element. Furthermore

χL(T ) = T r(L)πL(−T−1) and χL(0, T ) = χL(T ).

Remark 1.9. Let n be the number of atoms of L. Then the following

relation holds for the coboundary polynomial in terms of characteristic

polynomials:

χL(S, T ) =

n∑
i=0

Siχi(T ) with χi(T ) =
∑
x∈L

a(x)=i

χLx(T ).

χi(T ) is called the i-defect polynomial . See [63, 76].

Example 1.50. Let L be the lattice of all subsets of a given finite set of

r elements as in Examples 1.35 and 1.42. Then r(x) = a(x) and µ(x, y) =

(−1)a(y)−a(x) if x ≤ y. Hence

χL(T ) =

r∑
j=0

(
r

j

)
(−1)jT r−j = (T − 1)r and χi(T ) =

(
r

i

)
(T − 1)r−i.
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Therefore χL(S, T ) = (S + T − 1)r.

Example 1.51. Let L be the lattice of the simplex code, that is of all

linear subspaces of a given vector space of dimension r over the finite field

Fq as in Example 1.47. Then the number of atoms of L is n = qr−1
q−1 and

r(x) is the dimension of x over Fq. The number of subspaces of dimension

i is counted in Remark 1.4. It is left as an exercise to show that

µ(x, y) = (−1)iq(j−i)(j−i−1)/2

if r(x) = i, r(y) = j and x ≤ y, and

χL(T ) =
r∑

i=0

[r
i

]
q

(−1)iq(
i
2)T r−i

= (T − 1)(T − q) · · · (T − qr−1).

See [19] and the proof of Theorem 1.7. More generally if 0 ≤ i ≤ qr−1
q−1 and

0 ≤ j ≤ r, then

χi(T ) =


0 if qj−1−1

q−1 < i < qj−1
q−1 ,

1 if i = qr−1
q−1 ,[

r
j

]
q

∏r−j−1
l=0 (T − ql) if i = qj−1

q−1 , j < r.

See [77, Prop. 3.3].

Proposition 1.44 (Rota’s Crosscut Theorem). Let L be a finite geo-

metric lattice. Let M(L) = (E, I) be the matroid associated with L. Then

χL(T ) =
∑
J⊆E

(−1)|J|T r(L)−r(J).

Proof. See [71] and [78, Theorem 3.1]. �

As a consequence of Proposition 1.44 we have the following way to describe

the characteristic polynomial of L in terms of the Tutte polynomial of

M(L):

χL(T ) = (−1)r(L)tM(L)(1− T, 0).

Theorem 1.16. The two variable characteristic or coboundary polynomial

χL(S, T ) of a finite geometric lattice L is related to the Whitney rank gen-

erating function of M(L) by the formula

χL(S, T ) = (S − 1)r(L)RM(L)

(
T

S − 1
, S − 1

)
.
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Proof. See [79, p. 605] and [76, Theorem II]. �

Remark 1.10. Because of Theorem 1.16 we have the following relations

between tM(L)(X,Y ) and χL(S, T ):

χL(S, T ) = (S − 1)r(L)tM(L)

(
S + T − 1

S − 1
, S

)
and, vice versa,

tM(L)(X,Y ) = (Y − 1)r(L)χL(Y, (X − 1)(Y − 1)).

Therefore the polynomials χL(S, T ) and tM(L)(X,Y ) completely determine

each other.

Starting with an arbitrary matroid M one has the associated geometric lat-

tice L(M), but M(L(M)) is isomorphic with M if and only if M is simple

by Proposition 1.43. Therefore tM (X,Y ) and χL(M)(S, T ) completely de-

termine each other if M is simple, but tM (X,Y ) is a stronger invariant than

χL(M)(S, T ) if M is not simple. We will see a counterexample in Example

1.59

Remark 1.11. The relation between tM(L)(X,Y ) and χL(S, T ) shows

great similarity with the formula in Theorem 1.10. Combining the relations

we find that for projective codes

χi(T ) = An−i(T )

for all 0 ≤ i ≤ n.

Let Γ = (V,E) be a finite simple graph. Let χΓ be the characteristic poly-

nomial of the geometric lattice L(MΓ). Then for all positive integers k,

PΓ(k) = χΓ(k). So the chromatic polynomial of a graph is the prime exam-

ple of a characteristic polynomial and the two variable characteristic poly-

nomial of a graph is also called the dichromatic polynomial of the graph.

See [51, 53, 65].

Let γ be a coloring of Γ. Then an edge is called bad if if joins two vertices

with the same color. The i-defect polynomial χi(T ) counts up to a factor

of T the number of ways of coloring Γ with i bad edges. See [63, §6.3.F].
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1.8.2. The Möbius polynomial and Whitney numbers

Let L be a finite geometric lattice. The two variable Möbius polynomial

µL(S, T ) in S and T is defined by

µL(S, T ) =
∑
x∈L

∑
x≤y∈L

µ(x, y)Sr(x)T r(L)−r(y).

Now µ(L) = χL(0) and µL(0, T ) = χL(0, T ) = χL(T ).

Remark 1.12. Let r be the rank of L. Then the following relation holds

for the Möbius polynomial in terms of characteristic polynomials

µL(S, T ) =

r∑
i=0

Siµi(T ) with µi(T ) =
∑
x∈Li

χLx
(T ).

Example 1.52. In Examples 1.42 and 1.50 we considered the lattice L of

all subsets of a given finite set of r elements. Since r(x) = a(x) for all x ∈ L,

the Möbius polynomial of L is equal to the coboundary polynomial of L,

so µL(S, T ) = (S + T − 1)r.

Example 1.53. Let L be the lattice of all linear subspaces of a given vector

space of dimension r over the finite field Fq as in Example 1.44. In Example

1.51 we calculated the characteristic polynomial of this lattice. In the same

way, we find that

µi(T ) =
[r
i

]
q

(T − 1)(T − q) · · · (T − qr−i−1).

Remark 1.13. Let L be a geometric lattice. Then

r(L)∑
i=0

µi(T ) = µL(1, T )

=
∑
y∈L

∑
0≤x≤y

µ(x, y)T r(L)−r(y)

= T r(L)

since
∑

0≤x≤y µ(x, y) = 0 for all 0 < y in L by Proposition 1.40. Similarly∑n
i=0 χi(T ) = χL(1, T ) = T r(L). Also

∑n
w=0Aw(T ) = T k for the extended

weights of a code of dimension k by Propositions 1.21 and 1.22 for t = 0.

Example 1.54. Let L be the lattice consisting of [n] and all its subsets

of size at most k − 1 as in Example 1.36, which is also the lattice of the

uniform matroid Un,k and the lattice of an MDS code with parameters
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[n, k, n − k + 1]. Then µi(T ) and χi(T ) are both equal to
(
n
i

)
(T − 1)n−i

for all i < k as in Example 1.50, and χi(T ) = 0 for all k ≤ i < n, since

a(1L) = n, r(1L) = k and a(x) = r(x) for all x in Li and i < k. Remark

1.13 implies

µk(T ) = T k −
∑
i<k

(
n

i

)
(T − 1)n−i and χn(T ) = T k −

∑
i<k

(
n

i

)
(T − 1)n−i.

Let L be a finite geometric lattice. The Whitney numbers wi and Wi of the

first and second kind, respectively, are defined by

wi =
∑
x∈Li

µ(x) and Wi = |Li|.

The doubly indexed Whitney numbers wij and Wij of the first and second

kind, respectively, are defined by

wij =
∑
x∈Li

∑
y∈Lj

µ(x, y) and Wij = |{(x, y) : x ∈ Li, y ∈ Lj , x ≤ y}|.

In particular wj = w0j and Wj = W0j . See [80] and [63, §6.6.D] and [35,

Chapter 14] and [30, §3.11].

Remark 1.14. We have that

χL(T ) =

r(L)∑
i=0

wiT
r(L)−i and µL(S, T ) =

r(L)∑
i=0

r(L)∑
j=0

wijS
iT r(L)−j .

Hence the (doubly indexed) Whitney numbers of the first kind are deter-

mined by µL(S, T ). The leading coefficient of

µi(T ) =
∑
x∈Li

∑
x≤y

µ(x, y)T r(Lx)−rLx (y)

is equal to
∑

x∈Li
µ(x, x) = |Li| = Wi. Hence the Whitney numbers of the

second kind Wi are also determined by µL(S, T ). We will see in Example

1.60 that the Whitney numbers are not determined by χL(S, T ). Finally,

let r = r(L). Then

µr−1(T ) = (T − 1) ·Wr−1.

1.8.3. Minimal codewords and subcodes

A minimal codeword of a code C is a codeword whose support does not

properly contain the support of another codeword.
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The zero word is a minimal codeword. Notice that a nonzero scalar multi-

ple of a minimal codeword is again a minimal codeword. Nonzero minimal

codewords play a role in minimum distance decoding. Minimal codewords

play a role in minimum distance decoding algorithms [11, 58, 81] and se-

cret sharing schemes and access structures [82, 83]. We can generalize this

notion to subcodes instead of words.

A minimal subcode of dimension r of a code C is an r-dimensional sub-

code whose support is not properly contained in the support of another

r-dimensional subcode.

A minimal codeword generates a minimal subcode of dimension one, and

all the elements of a minimal subcode of dimension one are minimal code-

words. A codeword of minimal weight is a nonzero minimal codeword, but

the converse is not always the case.

In Example 1.60 we will see two codes that have the same Tutte polynomial,

but a different number of minimal codewords. Hence the number of mini-

mal codewords and subcodes is not determined by the Tutte polynomial.

However, the number of minimal codewords and the number of minimal

subcodes of a given dimension are given by the Möbius polynomial.

Theorem 1.17. Let C be a code of dimension k. Let 0 ≤ r ≤ k. Then the

number of minimal subcodes of dimension r is equal to Wk−r, the (r−k)-th

Whitney number of the second kind, and it is determined by the Möbius

polynomial.

Proof. Let D be a subcode of C of dimension r. Let J be the complement

in [n] of the support of D. If d ∈ D and dj 6= 0, then j ∈ supp(D) and j 6∈ J .

Hence D ⊆ C(J). Now suppose moreover that D is a minimal subcode of

C. Without loss of generality we may assume that D is systematic at the

first r positions. So D has a generator matrix of the form (Ir|A). Let di be

the i-th row of this matrix. Let c ∈ C(J). If c −
∑r

i=1 cidi is not the zero

word, then the subcode D′ of C generated by c,d2, . . . ,dr has dimension

r and its support is contained in supp(D) \ {1} and 1 ∈ supp(D). This

contradicts the minimality of D. Hence c −
∑r

i=1 cidi = 0 and c ∈ D.

Therefore D = C(J).

To find a minimal subcode of dimension r, we fix l(J) = r and minimize

the support of C(J) with respect to inclusion. Because J is contained in the

complement in [n] of the support of C(J), this is equivalent to maximize J
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with respect to inclusion. In matroid terms this means we are maximizing

J for r(J) = k − l(J) = k − r. This means J = J̄ is a flat of rank k − r by

Remark 1.8. The flats of a matroid are the elements in the geometric lattice

L = L(M). The number of (k − r)-dimensional elements in L(M) is equal

to |Lk−r|, which is equal to the Whitney number of the second kind Wk−r
and thus equal to the leading coefficient of µk−r(T ) by Remark 1.14. Hence

the Möbius polynomial determines all the numbers of minimal subcodes of

dimension r for 0 ≤ r ≤ k. �

Note that the flats of dimension k − r in a matroid are exactly the hyper-

planes in the (r − 1)-th truncated matroid T r−1(M). This gives another

proof of the result of Britz [61, Theorem 3] that the minimal supports of

dimension r are the cocircuits of the (r−1)-th truncated matroid. For r = 1,

this gives the well-known equivalence between nonzero minimal codewords

and cocircuits. See [35, Theorem 9.2.4] and [39, 1.21].

The number of minimal subcodes of dimension r does not change after

extending the code under a finite field extension, since this number is de-

termined by the Möbius polynomial of the lattice of the code, and this

lattice does not change under a finite field extension.

1.8.4. The characteristic polynomial of an arrangement

Let X be an affine variety in Ak defined over Fq, that is the zeroset of a

collection of polynomials in Fq[X1, . . . , Xk]. Then X (Fqm) is the set of all

points X with coordinates in Fqm , also called the the set of Fqm-rational

points of X . Note the similarity with extension codes.

A central arrangement A gives rise to a geometric lattice L(A) and charac-

teristic polynomial χL(A) that will be denoted by χA. Similarly πA denotes

the Poincaré polynomial of A. If A is an arrangement over the real numbers,

then πA(1) counts the number of connected components of the complement

of the arrangement. See [84]. Something similar can be said about arrange-

ments over finite fields.

Proposition 1.45. Let q be a prime power, and let A = (H1, . . . ,Hn) be

a simple and central arrangement in Fk
q . Then

χA(qm) = |Fk
qm \ (H1 ∪ · · · ∪Hn)|.

Proof. See [57, Theorem 2.2] and [85, Proposition 3.2] and [74, Sect. 16]

and [70, Theorem 2.69].
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Let A = Fk
qm and Aj = Hj(Fqm). Let L be the poset of all intersections of

the Aj with the reverse inclusion as partial order. The principle of inclu-

sion/exclusion as formulated in Example 1.38 gives that

|Fk
qm \ (H1 ∪ · · · ∪Hn)| =

∑
x∈L

µ(x)|x| =
∑
x∈L

µ(x)qm dim(x).

The expression on the right hand side is equal to χA(qm), since L is isomor-

phic with the geometric lattice L(A) of the arrangement A = (H1, . . . ,Hn)

with rank function r = rL, so dim(x) = r(L)− r(x). �

Let A = (H1, . . . ,Hn) be an arrangement in Fk over the field F. Let

H = Hi. Then the deletion A \H is the arrangement in Fk obtained from

(H1, . . . ,Hn) by deleting all the Hj such that Hj = H.

Let x = ∩i∈IHi be an intersection of hyperplanes of A. Let l be the dimen-

sion of x. The restriction Ax is the arrangement in Fl of all hyperplanes

x∩Hj in x such that x∩Hj 6= ∅ and x∩Hj 6= x, for a chosen isomorphism

of x with Fl.

Proposition 1.46 (Deletion-restriction formula).

Let A = (H1, . . . ,Hn) be a simple and central arrangement in Fk over

the field F. Let H = Hi. Then

χA(T ) = χA\H(T )− χAH
(T ).

Proof. Note the similarity of this theorem with the corresponding Propo-

sition 1.32 for graphs. A proof can be given using the deletion-contraction

formula for matroids in Proposition 1.38, Remark 1.11 that gives the rela-

tion between the two variable characteristic and the Tutte polynomial and

the fact that χA(T ) = χA(0, T ). Another proof for an arbitrary field can

be found in Orlik [70, Theorem 2.56]. Here a proof of the special case of

a central arrangement over the finite field Fq will be given by a counting

argument. Without loss of generality we may assume that H = H1. Denote

Hj(Fqm) by Hj and Fk
qm by V . Then we have the following disjoint union:

V \ (H2 ∪ · · · ∪Hn) = (V \ (H1 ∪H2 ∪ · · · ∪Hn))∪ (H1 \ (H2 ∪ · · · ∪Hn)) .

The number of elements of the left hand side is equal to χA\H(qm), and

the number of elements of the two sets on the right hand side are equal to

χA(qm) and χAH
(qm), respectively by Proposition 1.45. Hence

χA\H(qm) = χA(qm) + χAH
(qm)

for all positive integers m, since the union is disjoint. Therefore the identity

of the polynomial holds. �
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Let A = (H1, . . . ,Hn) be a central simple arrangement over the field F in

Fk. Let J ⊆ [n]. Define HJ = ∩j∈JHj . Consider the decreasing sequence

Nk ⊂ Nk−1 ⊂ · · · ⊂ N1 ⊂ N0

of algebraic subsets of the affine space Ak, defined by

Ni =
⋃

J⊆[n]
r(HJ )=i

HJ .

Define Mi = (Ni \ Ni+1).

Note that N0 = Ak, N1 = ∪nj=1Hj , Nk = {0} and Nk+1 = ∅. Furthermore,

Ni is a union of linear subspaces of Ak all of dimension k−i. Remember from

Remark 1.3 that HJ is isomorphic with C(J) in case A is the arrangement

of the generator matrix G of the code C.

Proposition 1.47. Let A = (H1, . . . ,Hn) be a central simple arrangement

over the field F in Fk. Let z(x) = {j ∈ [n] : x ∈ Hj} and r(x) = r(Hz(x))

the rank of x for x ∈ Ak. Then

Ni = {x ∈ Ak : r(x) ≥ i} and Mi = {x ∈ Ak : r(x) = i}.

Proof. Let x ∈ Ak and c = xG. Let x ∈ Ni. Then there exists a J ⊆ [n]

such that r(HJ) = i and x ∈ HJ . So cj = 0 for all j ∈ J . So J ⊆ z(x).

Hence Hz(x) ⊆ HJ . Therefore r(x) = r(Hz(x)) ≥ r(HJ) = i. The converse

implication is proved similarly.

The statement about Mi is a direct consequence of the one about Ni. �

Proposition 1.48. Let A be a central simple arrangement over Fq. Let

L = L(A) be the geometric lattice of A. Then

µi(q
m) = |Mi(Fqm)|.

Proof. See also [57, Theorem 6.3]. Remember from Remark 1.12 that

µi(T ) =
∑

r(x)=i χLx
(T ). Let L = L(A) and x ∈ L. Then L(Ax) = Lx.

Let ∪Ax be the union of the hyperplanes of Ax. Then |(x\ (∪Ax))(Fqm)| =
χLx

(qm) by Proposition 1.45. NowMi is the disjoint union of complements

of the arrangements of Ax for all x ∈ L such that r(x) = i by Proposition
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1.47. Hence

|Mi(Fqm)| =
∑
x∈L

r(x)=i

|(x \ (∪Ax))(Fqm)|

=
∑
x∈L

r(x)=i

χLx
(qm).

�

1.8.5. The characteristic polynomial of a code

Proposition 1.49. Let C be a nondegenerate Fq-linear code. Then

An(T ) = χC(T ).

Proof. The short proof is given by χC(T ) = χC(0, T ) = χ0(T ) = An(T ).

The geometric interpretation is as follows.

The elements in Fk
qm \ (H1 ∪ · · · ∪Hn) correspond one-to-one to codewords

of weight n in C ⊗ Fqm by Proposition 1.16 and because the arrangements

corresponding to C and C ⊗ Fqm are the same. So An(qm) = χC(qm) for

all positive integers m by Proposition 1.45. Hence An(T ) = χC(T ). �

Let G be a generator matrix of a [n, k] code C over Fq. Define

Yi = {x ∈ Ak : wt(xG) ≤ n− i} and Xi = {x ∈ Ak : wt(xG) = n− i}.

The Yi form a decreasing sequence

Yn ⊆ Yn−1 ⊆ · · · ⊆ Y1 ⊆ Y0

of algebraic subsets of Ak, and Xi = (Yi \ Yi+1). Suppose that G has no

zero column. Let AG be the arrangement of G. Then

Xi = {x ∈ Ak : x is in exactly i hyperplanes of AG}.

Proposition 1.50. Let C be a projective code of length n. Then

χi(q
m) = |Xi(Fqm)| = An−i(q

m).

Proof. Every x ∈ Fk
qm corresponds one-to-one to codeword in C ⊗ Fqm

via the map x 7→ xG. So |Xi(Fqm)| = An−i(q
m). Also, An−i(q

m) = χi(q
m)

for all i, by Remark 1.11. See also [86, Theorem 3.3]. �

The similarity between Proposition 1.50 and Proposition 1.16 gives a ge-

ometric argument for the relation between χC(S, T ) and WC(X,Y, T ) in

Remark 1.11.
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Remark 1.15. Another way to define Xi is the collection of all points

P ∈ Ak such that P is on exactly i distinct hyperplanes of the arrangement

AG. Denote the arrangement of hyperplanes in Pk−1 also by AG, and let P̄

be the point in Pk−1 corresponding to P ∈ Ak. Define

X̄i = {P̄ ∈ Pk−1 : P̄ is on exactly i hyperplanes of AG}.

For all i < n the polynomial χi(T ) is divisible by T − 1. Define χ̄i(T ) =

χi(T )/(T − 1). Then χ̄i(q
m) = |X̄i(Fqm)| for all i < n by Proposition 1.50.

Theorem 1.18. Let G be a generator matrix of a nondegenerate code C.

Let AG be the associated central arrangement. Let d⊥ = d(C⊥). Then Ni ⊆
Yi for all i, equality holds for all i < d⊥. Also, Mi = Xi for all i < d⊥− 1.

If furthermore C is projective, then

µi(T ) = χi(T ) = An−i(T ) for all i < d⊥ − 1.

Proof. Let x ∈ Ni. Then x ∈ HJ for some J ⊆ [n] such that r(HJ) = i.

So |J | ≥ i and wt(xG) ≤ n−i by Proposition 1.16. Hence x ∈ Yi. Therefore

Ni ⊆ Yi.
Let i < d⊥ and x ∈ Yi. Then wt(xG) ≤ n − i. Let J = supp(xG). Then

|J | ≥ i. Take a subset I of J such that |I| = i. Then x ∈ HI and r(I) =

|I| = i by Lemma 1.2, since i < d⊥. Hence x ∈ Ni. Therefore Yi ⊆ Ni. So

Yi = Ni for all i < d⊥, and Mi = Xi for all i < d⊥ − 1.

The code is nondegenerate. So d(C⊥) ≥ 2. Suppose furthermore that C is

projective. Then µi(T ) = χi(T ) = An−i(T ) for all i < d⊥ − 1, by Remark

1.11 and Propositions 1.50 and 1.48. �

The extended and generalized weight enumerators are determined by the

pair (n, k) for a [n, k] MDS code by Theorem 1.8. If C is a [n, k] code, then

d(C⊥) is at most k+1. Furthermore d(C⊥) = k+1 if and only if C is MDS

if and only if C⊥ is MDS. A [n, k, d] code is called almost MDS if d = n−k.

So d(C⊥) = k if and only if C⊥ is almost MDS. If C is almost MDS, then

C⊥ is not necessarily almost MDS. The code C is called near MDS if both

C and C⊥ are almost MDS. See [87].

Proposition 1.51. Let C be a [n, k, d] code such that C⊥ is MDS or almost

MDS and k ≥ 3. Then both χC(S, T ) and WC(X,Y, T ) determine µC(S, T ).

In particular

µi(T ) = χi(T ) = An−i(T ) for all i < k − 1,
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µk−1(T ) =

n−1∑
i=k−1

χi(T ) =

n−1∑
i=k−1

An−i(T ),

and µk(T ) = 1.

Proof. Let C be a code such that d(C⊥) ≥ k ≥ 3. Then C is projective

and µi(T ) = χi(T ) = An−i(T ) for all i < k − 1 by Theorem 1.18. Further-

more, µk(T ) = χn(T ) = A0(T ) = 1.

Finally let L = L(C). Then
∑k

i=0 µi(T ) = T k,
∑n

i=0 χi(T ) = T k and∑n
i=0Ai(T ) = T k by Remark 1.13. Hence the formula for µk−1(T ) holds.

Therefore µC(S, T ) is determined both by WC(X,Y, T ) and χC(S, T ). �

Projective codes of dimension 3 are examples of codes C such that C⊥ is

almost MDS. In the following we will give explicit formulas for µC(S, T )

for such codes.

Let C be a projective code of length n and dimension 3 over Fq with gen-

erator matrix G. The arrangement AG = (H1, . . . ,Hn) of planes in F3
q is

simple and essential, and the corresponding arrangement of lines in P2(Fq)

is also denoted by AG. We defined in Remark 1.15 that

X̄i(Fqm) = {P̄ ∈ P2(Fqm) : P̄ is on exactly i lines of AG}

and χ̄i(q
m) = |X̄i(Fqm)| for all i < n.

Notice that for projective codes of dimension 3 we have X̄i(Fqm) = X̄i(Fq)

for all positive integers m and 2 ≤ i < n. Abbreviate in this case χ̄i(q
m) =

χ̄i for 2 ≤ i < n.

Proposition 1.52. Let C be a projective code of length n and dimension

3 over Fq. Then
µ0(T ) = (T − 1)

(
T 2 − (n− 1)T +

∑n−1
i=2 (i− 1)χ̄i − n+ 1

)
,

µ1(T ) = (T − 1)
(
nT + n−

∑n−1
i=2 iχ̄i

)
,

µ2(T ) = (T − 1)
(∑n−1

i=2 χ̄i

)
,

µ3(T ) = 0.

Proof. A more general statement and proof is possible for [n, k] codes C

such that d(C⊥) ≥ k, using Proposition 1.51, the fact that Bt(T ) = T k−t−1

for all t < d(C⊥) by Lemma 1.2 and the expression of Bt(T ) in terms of

Aw(T ) by Proposition 1.17. We will give a second geometric proof for the
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special case of projective codes of dimension 3.

By Lagrange interpolation it is enough to show this proposition with T =

qm for all m. Notice that µi(q
m) is the number of elements ofMi(Fqm) by

Proposition 1.48. Let P̄ be the corresponding point in P2(Fqm) for P ∈ F3
qm

and P 6= 0. Abbreviate Mi(Fqm) by Mi. Define M̄i = {P̄ : P ∈ Mi}.
Then |Mi| = (qm − 1)|M̄i| for all i < 3.

If P̄ ∈ M̄2, then P̄ ∈ Hj ∩Hk for some j 6= k. Hence P̄ ∈ X̄i(Fq) for some

i ≥ 2, since the code is projective. So M̄2 is the disjoint union of the X̄i(Fq)

for 2 ≤ i < n. Therefore |M̄2| =
∑n−1

i=2 χ̄i.

P̄ ∈ M̄1 if and only if P̄ is on exactly one line Hj . There are n lines, and

every line has qm + 1 points that are defined over Fqm . If i ≥ 2, then every

P̄ ∈ X̄i(Fq) is on i lines Hj . Hence |M̄1| = n(qm + 1)−
∑n−1

i=2 iχ̄i.

Finally, P2(Fqm) is the disjoint union of M̄0, M̄0 and M̄2. The numbers

|M̄2| and |M̄1| are already computed, and |P2(Fqm)| = q2m +qm +1. From

this we derive the number of elements of M̄0. �

Note that µi(T ) is divisible by T − 1 for all 0 ≤ i < k. Define µ̄i =

µi(T )/(T − 1). Define similarly Āw = Aw(T )/(T − 1) for all 0 < w ≤ n.

1.8.6. Examples and counterexamples

Example 1.55. Consider the matrices G given by

G =

 1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

 .

Let C be the code over Fq with generator matrix G. For q = 2, this is the

simplex code S2(2). The columns of G represent also the coefficients of the

lines of AG. The projective picture of AG is given in Figure 1.12.

If q is odd, then there are 3 points on two lines and 6 points on three lines,

so χ̄2 = 3 and χ̄3 = 6. The number of points that are on one line is equal

to the number of points on each of the seven lines, minus the points we

already counted, with multiplicity: 7(T + 1)− 3 · 2− 6 · 3 = 7T − 17. There

are no points on more than three lines, so χ̄i = 0 for i > 3. We calculate

χ̄0 via χ̄0 + χ̄1 + χ̄2 + χ̄3 = T 2 + T + 1.

If q is even, we can do the same kind of calculation. The values of µ̄i can

be calculated using Proposition 1.52, but they follow more directly from

Proposition 1.51. The results are in the next table:
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H2

H4

H5

H6

H1

H4

H3

H6

H5

H7 H7

H1

H3

H2

Fig. 1.12. The arrangement of G for q odd and q even

i 0 1 2 3 4 5 6 7

χ̄i T
2 − 6T + 9 7T − 17 3 6 0 0 0

q odd Āi 0 0 0 6 3 7T − 17 T 2 − 6T + 9

µ̄i T 2 − 6T + 9 7T − 17 9 1

χ̄i T
2 − 6T + 8 7T − 14 0 7 0 0 0

q even Āi 0 0 0 7 0 7T − 14 T 2 − 6T + 8

µ̄i T 2 − 6T + 8 7T − 14 7 1

Notice that there is a codeword of weight 7 in case q is even and q > 4 or q

is odd and q > 3, since Ā7 = (T − 2)(T − 4) or Ā7 = (T − 3)2, respectively.

Example 1.56. Let G be a 3 × n generator matrix of an MDS code. As

mentioned in Example 1.30, the lines of the arrangement AG are in general

position. That means that every two distinct lines meet in one point, and

every three mutually distinct lines have an empty intersection. So χ̄2 =
(
n
2

)
and χ̄i = 0 for all i > 2. By Proposition 1.52 we have µ̄2 =

(
n
2

)
and

µ̄1 = nT + 2n − n2 and µ̄0 = T 2 − (n − 1)T +
(
n−1

2

)
. By Proposition 1.48

we find Ai = 0 for 0 < i < n − 2, Ān−2 = χ̄2 and Ān−1 = χ̄1 = µ̄1 and

Ān = χ̄0 = µ̄0. The values found for the extended weight enumerator are

in agreement with Theorem 1.8.

Example 1.57. Let a and b positive integers such that 2 < a < b. Let

n = a + b. Let G be a 3 × n generator matrix of a nondegenerate code.

Suppose that there are two points P and Q in the projective plane over Fq
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such that the a + b lines of the projective arrangement of AG consists of

a distinct lines incident with P , and b distinct lines incident with Q and

there is no line incident with P and Q. Then χ̄2 = Ān−2 = ab, χ̄a = Āb = 1

and χ̄b = Āa = 1. Hence µ̄2(T ) = ab+ 2. Furthermore

µ̄1 = Ān−1 = (a+ b)T − 2ab,

µ̄0 = Ān = T 2 − (a+ b− 1)T + ab− 1

and Āi = 0 for all i /∈ {a, b, n− 2, n− 1, n}.

Example 1.58. Let a, b and c be positive integers such that 2 < a < b < c.

Let n = a + b + c. Let G be a 3 × n generator matrix of a nondegenerate

code C(a, b, c). Suppose that there are three points P , Q and R in the

projective plane over Fq such that the lines of the projective arrangement

of AG consist of a distinct lines incident with P and not with Q and R, b

distinct lines incident with Q and not with P and R, and c distinct lines

incident with R and not with P and Q. The a lines through P intersect

the b lines through Q in ab points. Similarly statements hold for the lines

through P and R intersecting in ac points, and the lines through Q and R

intersecting in bc points. Suppose that all these ab + bc + ac intersection

points are mutually distinct, so every intersection point lies on exactly two

lines of the arrangement. If q is large enough, then such a configurations

exists.

The number of points on two lines of the arrangement is χ̄2 = ab+ bc+ ca.

Since P is the unique point on exactly a lines of the arrangement, we have

χ̄a = 1. Similarly χ̄b = χ̄c = 1. Finally χ̄i = 0 for all 2 ≤ i < n and i /∈
{2, a, b, c}. Propositions 1.51 and 1.52 imply that Ān−a = Ān−b = Ān−c = 1

and Ān−2 = ab+ bc+ ca and µ̄2 = ab+ bc+ ca+ 3. Furthermore

µ̄1 = χ̄1 = Ān−1 = nT − 2(ab+ bc+ ca),

µ̄0 = χ̄0 = Ān = T 2 − (n− 1)T + ab+ bc+ ca− 2

and Āi(T ) = 0 for all i 6∈ {0, n− c, n− b, n− a, n− 2, n− 1, n}.
Therefore WC(a,b,c)(X,Y, T ) = WC(a′,b′,c′)(X,Y, T ) if and only if (a, b, c) =

(a′, b′, c′), and µC(a,b,c)(S, T ) = µC(a′,b′,c′)(S, T ) if and only if a+b+c = a′+

b′+c′ and ab+bc+ca = a′b′+b′c′+c′a′. In particular let C1 = C(3, 9, 14) and

C2 = C(5, 6, 15). Then C1 and C2 are two projective codes with the same

Möbius polynomial µC(S, T ) but distinct extended weight enumerators and

coboundary polynomial χC(S, T ).

Now d(C(a, b, c)) = n − c. Hence d(C1) = 12 and d(C2) = 11. Therefore



January 14, 2011 12:0 World Scientific Review Volume - 9in x 6in handbook-wtenum

Codes, arrangements and matroids 91

µC(S, T ) does not determine the minimum distance although it gives the

number of minimal codewords.

Example 1.59. Consider the codes C3 and C4 over Fq with q > 2 with

generator matrices G3 and G4 given by

G3 =

 1 1 0 0 1 0 0

0 1 1 1 0 1 0

−1 0 1 1 0 0 1

 and G4 =

1 1 0 0 1 0 0

0 1 1 1 0 1 0

0 1 1 a 0 0 1


where a ∈ Fq \ {0, 1}. It was shown in Brylawsky [63, Exercise 6.96] that

the duals of these codes have the same Tutte polynomial. So the codes C3

and C4 have the same Tutte polynomial

tC(X,Y ) = 2X+2Y +3X2 +5XY +4Y 2 +X3 +X2Y +2XY 2 +3Y 3 +Y 4.

Hence C3 and C4 have the extended weight enumerator given by

X7 + (2T − 2)X4Y 3 + (3T − 3)X3Y 4 + (T 2 − T )X2Y 5+

+ (5T 2 − 15T + 10)XY 6 + (T 3 − 6T 2 + 11T − 6)Y 7.

The codes C3 and C4 are not projective and their simplifications C̄3 and

C̄4, respectively, have generator matrices given by

Ḡ3 =

 1 1 0 1 0 0

0 1 1 0 1 0

−1 0 1 0 0 1

 and Ḡ4 =

1 1 0 0 0 0

0 1 1 1 1 0

0 1 1 a 0 1


where a ∈ Fq \ {0, 1}.
From the arrangement A(C̄3) and A(C̄4) in Figure 1.13 we deduce the χ̄i

that are given in the following table.

code \ i 0 1 2 3 4 5

C3 T 2 − 5T + 6 6T − 12 3 4 0 0

C4 T 2 − 5T + 6 6T − 13 6 1 1 0

Therefore tC3(X,Y ) = tC4(X,Y ) but χC3(S, T ) 6= χC4(S, T ) and

tC̄3
(X,Y ) 6= tC̄4

(X,Y ).

Example 1.60. Let C5 = C⊥3 and C6 = C⊥4 . Their generator matrices are

G5 =


1 0 0 0 1 0 −1

0 1 0 0 1 1 0

0 0 1 0 0 1 1

0 0 0 1 0 1 1

 and G6 =


1 0 0 0 1 0 0

0 1 0 0 1 1 1

0 0 1 0 0 1 1

0 0 0 1 0 1 a


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H2

H1

H3

H5

H6

H4 H1

H6 H5

H4

H3

H2

Fig. 1.13. The arrangements of Ḡ3 and Ḡ4

where a ∈ Fq \ {0, 1}. Then C5 and C6 have the same Tutte polynomial

tC⊥(X,Y ) = tC(Y,X) as given by Example 1.59:

2X + 2Y + 4X2 + 5XY + 3Y 2 + 3X3 + 2X2Y +XY 2 + Y 3 + 3X4.

Hence C5 and C6 have the same extended weight enumerator given by

X7 + (T − 1)X5Y 2

+ (6T − 6)X4Y 3 + (2T 2 − T − 1)X3Y 4 + (15T 2 − 43T + 28)X2Y 5

+ (7T 3 − 36T 2 + 60T − 31)XY 6 + (T 4 − 7T 3 + 19T 2 − 23T + 10)Y 7.

The geometric lattice L(C5) has atoms a, b, c, d, e, f, g corresponding to the

first, second, etc. column of G5. The second level of L(C5) consists of the

following 17 elements:

abe, ac, ad, af, ag, bc, bd, bf, bg, cd, ce, cf, cg, de, df, dg, efg.

The third level consists of the following 12 elements:

abce, abde, abefg, acdg, acf, adf, bcdf, bcg, bdg, cde, cefg, defg.

Similarly, the geometric lattice L(C6) has atoms a, b, c, d, e, f, g correspond-

ing to the first, second, etc. column of G6. The second level of L(C6) consists

of the following 17 elements:

abe, ac, ad, af, ag, bc, bd, bf, bg, cd, ce, cf, cg, de, dfg, ef, eg.

The third level consists of the following 13 elements:

abce, abde, abef, abeg, acd, acf, acg, adfg, bcdfg, cde, cef, ceg, defg.



January 14, 2011 12:0 World Scientific Review Volume - 9in x 6in handbook-wtenum

Codes, arrangements and matroids 93

Theorem 1.18 implies that µ0(T ) and µ1(T ) are the same for both codes

and equal to

µ0(T ) = χ0(T ) = A7(T ) = (T − 1)(T − 2)(T 2 − 4T + 5)

µ1(T ) = χ1(T ) = A6(T ) = (T − 1)(7T 2 − 29T + 31).

The polynomials µ3(T ) and µ2(T ) are given in the following table using

Remarks 1.14 and 1.13.

C5 C6

µ2(T ) 17T 2 − 49T + 32 17T 2 − 50T + 33

µ3(T ) 12T − 12 13T − 13

This example shows that for projective codes the Möbius polynomial

µC(S, T ) is not determined by the coboundary polynomial χC(S, T ).

1.9. Overview of polynomial relations

We have established relations between the generalized weight enumerators

for 0 ≤ r ≤ k, the extended weight enumerator and the Tutte polynomial.

We summarize this in Figure 1.14.

WC(X,Y )

WC(X,Y, T )

Th.1.7
zz

Th.1.10

��

mm

{W (r)
C (X,Y )}kr=0

Th.1.6
55

Th.1.11//

[[

tC(X,Y )
Th.1.11
oo

Th.1.9

OO

{W (r)
C (X,Y, T )}kr=0

--

jj

��

cc

Fig. 1.14. Relations between the weight enumerator and Tutte polynomial

We see that the Tutte polynomial, the extended weight enumerator and the

collection of generalized weight enumerators all contain the same amount

of information about a code, because they completely define each other.

The original weight enumerator WC(X,Y ) contains less information and
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therefore does not determine WC(X,Y, T ) or {W (r)
C (X,Y )}kr=0. See Simo-

nis [21].

One may wonder if the method of generalizing and extending the weight

enumerator can be continued, creating the generalized extended weight enu-

merator, in order to get a stronger invariant. The answer is no: the gen-

eralized extended weight enumerator can be defined, but does not contain

more information than the three underlying polynomials.

Now tC(X,Y ), RMC
(X,Y ) and χC(S, T ) determine each other on the class

of projective codes by Theorem 1.16. This is summarized in Figure 1.15.

The dotted arrows only apply if the matroid is simple or, equivalently, if

the code is projective.

WC(X,Y, T )

Rm.1.11

��

Th.1.10 // tC(X,Y )

Rm.1.10

��

Th.1.9
oo

Df.1.3xx
RMC

(X,Y )

Df.1.3

88

Th.1.16ww
χC(S, T )

Rm.1.11

OO

Rm.1.10 //

Th.1.16

77

tC̄(X,Y )

Rm.1.10

OO

Rm.1.10
oo

Fig. 1.15. Relations between the weight enumerator, characteristic, and Tutte polyno-

mial

The polynomials χC(S, T ) and µC(S, T ) do not determine each other by

Examples 1.58 and 1.60.

1.10. Further reading and open problems

1.10.1. Multivariate and other polynomials

The multivariate Tutte or polychromatic polynomial of a graph and a ma-

troid is considered in [88–91] and is related to the partition function of the

Potts-model in statistical mechanics [92, 93]. The multivariate weight enu-

merator of a code is considered in [94]. The characteristic and multivariate

Tutte polynomial of arrangements are studied in [57, 86, 95].
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The tree polynomial of a graph is generalized to the basis polynomial of a

matroid [96]. The characteristic polynomial of a graph is the characteristic

polynomial det(λI − A) of the adjacency matrix A of the graph [46] and

is distinct from the chromatic polynomial of the graph and from the char-

acteristic polynomial of the geometric lattice of the graph. The spectrum

of a graph is the set of eigenvalues of the characteristic polynomial of the

graph.

Gray gave an example of two non-isomorphic graphs that have the same

Tutte polynomial. This result was generalized in [54] on codichromatic

graphs and in [88] on copolychromatic graphs.

Every polynomial in one variable with coefficients in a field F factorizes in

linear factors over the algebraic closure F̄ of F. In Examples 1.50 and 1.51

we see that χL(T ) factorizes in linear factors over Z. This is always the case

for so called super solvable geometric lattices and lattices from free central

arrangements. See [70].

The theory of matroid complexes gives rise to the spectrum polynomial [97].

A recurrence relation is proved in [98, 99] for the spectrum polynomial that

is a variation of the deletion-contraction formula for the Tutte polynomial.

The Tutte polynomial does not determine the spectrum polynomial. The

converse problem is an open question. The multivariate spectrum polyno-

mial is considered in [100].

The theory of knots and links and their Kauffman, Jones and Homfly poly-

nomials have connections with graph theory and the Tutte polynomial.

See [101–103].

1.10.2. The coset leader weight enumerator

Let C be a linear code of length n over Fq. Let y ∈ Fn
q . The weight of the

coset y + C is defined by

wt(y + C) = min{wt(y + c) : c ∈ C}.

A coset leader is a choice of an element y ∈ Fn
q of minimal weight in its

coset, that is wt(y) = wt(y +C). Let αi be the number of cosets of C that

are of weight i. Let λi be the number of y in Fn
q that are of minimal weight

i in its coset. Then αC(X,Y ), the coset leader weight enumerator of C and
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λC(X,Y ), the list weight enumerator of C are polynomials defined by

αC(X,Y ) =

n∑
i=0

αiX
n−iY i and λC(X,Y ) =

n∑
i=0

λiX
n−iY i.

See [8, 104]. The covering radius ρ(C) of C is the maximal i such that

αi(C) 6= 0. We have αi = λi =
(
n
i

)
(q − 1)i for all i ≤ (d − 1)/2, where d

is the minimum distance of C. The coset leader weight enumerator gives a

formula for the error probability, that is the probability that the output of

the decoder is the wrong codeword. In this decoding scheme the decoder

uses the chosen coset leader as the error vector as explained in Section

1.3.4 and [8, Chap.1 §5]. The list weight enumerator is of interest in case

the decoder has as output the list of all nearest codewords [105, 106]. The

coset leader weight enumerator is also used in steganography to compute

the average of changed symbols [107, 108].

The covering radius is determined by the coset leader weight enumerator of

a code. The covering radius of a binary code is in general not determined

by the Tutte polynomial of the code by [32]. Hence the Tutte polynomial

and the extended weight enumerator of a code do not determine the coset

leader weight enumerator.

Consider the functions αi(T ) and λi(T ) such that αi(q
m) and λi(q

m) are

equal to the number of cosets of weight i and the number of elements in Fn
qm

of minimal weight i in its coset, respectively, with respect to the extended

coded C⊗Fqm . Define the extended coset leader weight enumerator and the

extended list weight enumerator [3], respectively, by:

αC(X,Y, T ) =

n∑
i=0

αi(T )Xn−iY i and λC(X,Y, T ) =

n∑
i=0

λi(T )Xn−iY i.

In [104, Theorem 2.1] it is shown that the function αi(T ) is determined by

finitely many data for all extensions of Fq. In fact, the αi(T ) are polynomials

in the variable T . There are well defined nonnegative integers Fij such that

αC(X,Y, T ) = 1 +

n−k∑
i=1

n−k∑
j=1

Fij(T − 1)(T − q) · · · (T − qj−1)Xn−iY i.

This is similar to the expression of the extended weight enumerator in terms

of the generalized weight enumerator as given in Proposition 1.28.
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1.10.3. Graph codes

Graph codes were studied in [109] and used in [110] to show that decoding

linear codes is hard, even if preprocessing is allowed. Sparse graph codes,

Gallager or Low-density parity check codes and Tanner graph codes play an

important role in the research of coding theory at this moment. See [111,

112].

1.10.4. The reconstruction problem

The reconstruction problem is whether a structure can be reconstructed

from certain substructures. The original vertex reconstruction problem of

Ulam and Kelly is whether a graph with at least three vertices can be recon-

structed form the collection of its vertex deleted subgraphs. The edge recon-

struction problem of a graph Γ = (V,E) with at least four edges is whether

this graph can be reconstructed form the collection of its edge deleted sub-

graphs Γ \ e. Both reconstruction problems are still open. See [113] for a

survey. One can formulate a corresponding reconstruction problem for ma-

troids. Let M = (E, I) and N = (E,J ) be matroids on the same set E.

Are M and N isomorphic if M \ e and N \ e are isomorphic for all e in

E? In [114] a counterexample is given for this reconstruction problem for

matroids. One can reconstruct the Tutte polynomial of M if one knows the

Tutte polynomial of M \ e for all e in E, see [115]. See a similar result for

the polychromatic polynomial of graphs in [116].

1.10.5. Questions concerning the Möbius polynomial

Is it true that the Möbius polynomial of M is determined by the collection

of Möbius polynomials of all M \ e with e in E?

The doubly indexed Whitney numbers of the first kind and the Whitney

numbers of the second kind are determined by the Möbius polynomial as

was shown in Remark 1.14 and Theorem 1.17. Are the doubly indexed

Whitney numbers of the second kind determined by the Möbius polyno-

mial?

The geometric lattice of a matroid M is equal to the geometric lattice of its

simplification M̄ by Proposition 1.43. So information is lost by this process.

The dual of a simple matroid is not necessarily simple. Similarly the dual

of a projective code is not necessarily projective. Now suppose that both C
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and its dual are projective. Is there a MacWilliams type of formula for the

Möbius polynomial? In other words: Is µC(S, T ) determined by µC⊥(S, T )?

A similar question could be asked for matroids M such that M and M⊥

are simple.

We have seen in Example 1.58 that the Tutte polynomial and the cobound-

ary polynomial are not determined by the Möbius polynomial of a pro-

jective code. Is χC(S, T ) determined by the polynomials µC(S, T ) and/or

µC⊥(S, T ) if C and C⊥ are projective?

1.10.6. Monomial conjectures

A sequence of real numbers (v0, v1, . . . , vr) is called unimodal if

vi ≥ min{vi−1, vi+1} for all 0 < i < r.

The sequence is called logarithmically concave or log-concave if

v2
i ≥ vi−1vi+1 for all 0 < i < r.

The Whitney numbers of the first kind are alternating in sign. That is

w+
i := (−1)iwi > 0 for all i.

It was conjectured by Rota [117] that the Whitney numbers w+
i are uni-

modal. See [118, Problem 12]. Welsh [36] conjectured that the Whitney

numbers w+
i are log-concave by generalizing a conjecture of Read [119] on

graphs. It was shown that the following weaker version of the unimodal

property is true for a matroid M of rank r:

w+
i < w+

j for all 0 ≤ i ≤ r/2 and i < j ≤ r − i.

See [120, Corollary 8.4.2].

1.10.7. Complexity issues

The computation of the minimum distance and the weight enumerator of a

code are NP hard problems [11, 13]. The computation of the coefficients of

the Tutte polynomial of planar graphs is #P hard, but also the evaluation

at a specific point (x, y) is #P-hard except for 9 points and two special

curves [103, 121–123].
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1.10.8. The zeta function

The counting of rational points over field extensions Fqm is computed by

the zeta function. Let X be an affine variety in Ak defined over Fq, that is

the zeroset of a collection of polynomials in Fq[X1, . . . , Xk]. Then X (Fqm)

is the set of all points X with coordinates in Fqm , also called the the set

of Fqm-rational points of X . The zeta function ZX (T ) of X is the formal

power series in T defined by

ZX (T ) = exp

( ∞∑
m=1

|X (Fqm)|
r

T r

)
.

Theorem 1.19. Let A be a central simple arrangement in Fk
q . Let

χA(T ) =

k∑
j=0

cjT
j

be the characteristic polynomial of A. Let M = Ak \ (H1 ∪ · · · ∪Hn) be the

complement of the arrangement. Then the zeta function of M is given by:

ZM(T ) =

k∏
j=0

(1− qjT )−cj .

Proof. See [85, Theorem 3.6]. �

The numbers |cj | can be interpreted as the Betti numbers of the cohomol-

ogy of the complement of the arrangement over the algebraic closure of

the finite field, which is analogous to the situation over the complex num-

bers [70, 124].

The (two variable) zeta function of a code as defined by Duursma [24,

125, 126] is motivated by algebraic geometry codes on curves and the zeta

function of the curve. It is related to the extended and generalized weight

enumerator of the code and not to the zeta function of the arrangement of

the code.
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