Deletion and contraction in q-matroids

Relinde Jurrius

Vrije Universiteit Brussel, Belgium

Combinatorics June 2, 2014

q-Analogues

Finite set \longrightarrow finite vectorspace over \mathbb{F}_{q}

Example

 $\begin{bmatrix} n \\ k \end{bmatrix}_{q}$ = number of k-dim subspaces of n-dim vectorspace over \mathbb{F}_{q}

$$= \prod_{i=0}^{k-1} rac{q^n-q^i}{q^k-q^i}$$

q-Analogues

Example

t- (v, k, λ) design: pair (X, \mathcal{B}) with

- ► X set with v elements (points)
- \mathcal{B} family of subsets of X of size k (blocks)
- Every *t*-tuple of points is contained in exactly λ blocks

t- $(v, k, \lambda; q)$ *q*-design: pair (X, \mathcal{B}) with

- X v-dim vectorspace over \mathbb{F}_q
- \mathcal{B} family of k-dim subspaces of X (blocks)
- Every *t*-dim subspace is contained in exactly λ blocks

Motivation: network coding

Motivation: network coding

Idea: send (rows of) matrices instead of vectors

Better idea: send (bases of) subspaces instead of matrices

Motivation: network coding

Codewords are vectors:

'Ordinary' error-correcting codes

Codewords are matrices:

Rank metric codes

q-analogue of 'ordinary' codes

Codewords are subspaces:

Subspace codes

Constant dimension, constant weight: q-design

q-Analogues

finite set	finite space \mathbb{F}_q^n
element	1-dim subspace
size	dimension
п	$rac{q^n-1}{q-1}$
intersection	intersection
union	sum
complement	quotient space

From q-analogue to 'normal': let $q \rightarrow 1$.

Matroids and *q*-matroids

Matroid: a pair (E, \mathcal{I}) with

- ► E finite set;
- $\mathcal{I} \subseteq 2^{E}$ family of subsets of *E*, the *independent sets*, with:
 - (11) $\emptyset \in \mathcal{I}$ (12) If $A \in \mathcal{I}$ and $B \subseteq A$ then $B \in \mathcal{I}$. (13) If $A, B \in \mathcal{I}$ and |A| > |B| then there is an $a \in A \setminus B$ such that $B \cup \{a\} \in \mathcal{I}$.

Examples:

- ► Set of vectors; independence = linear independence
- ► Set of edges of a graph; independence = cycle free

Matroids and *q*-matroids

q-Matroid: a pair (E, \mathcal{I}) with

- ► *E* finite space;

Why study *q*-matroids?

Matroids generalize:

- ► codes
- ► graphs
- ► some designs

q-Matroids generalize:

- rank metric codes
- ► *q*-graphs ?
- ► *q*-designs ?

Deletion / contraction

 $M = (E, \mathcal{I})$ matroid, *e* element of *E*

Deletion M - e

Ground set: $E - \{e\}$

Independent sets: members of $\mathcal I$ that do not contain e

 $= \{I \in \mathcal{I} : e \notin I\}$

Contraction M/e

Ground set: $E - \{e\}$

Independent sets: members of \mathcal{I} containing e, with e removed

 $= \{I - \{e\} : I \in \mathcal{I}, e \in I\}$

Deletion and contraction

 $M = (E, \mathcal{I})$ *q*-matroid, *e* 1-dim subspace of *E*

Deletion M - e

Ground space: E/e with 'projection' $\pi: E \to E/e$ Independent spaces: members of $\mathcal I$ that do not contain e, mapped to E/e

$$= \{\pi(I) : I \in \mathcal{I}, e \not\subseteq I\}$$

Contraction M/e

Ground space: E/e with 'projection' $\pi: E \rightarrow E/e$

Independent spaces: members of \mathcal{I} containing e, mapped to E/e

$$= \{\pi(I) : I \in \mathcal{I}, e \subseteq I\}$$

Deletion and contraction

e element of finite set E

{subsets not containing e} \cup {subsets containing e} $= 2^{E}$ $|\mathcal{I}(M - e)| + |\mathcal{I}(M/e)| = |\mathcal{I}(M)|$

e 1-dimensional subspace of $E = \mathbb{F}_q^n$

If $A, B \in \mathcal{I}$ do not contain e, it is possible that $\pi(A) = \pi(B)$. How often does that happen?

Deletion and contraction

Total number of k-dim subspaces in $E: \begin{bmatrix} n \\ k \end{bmatrix}_{a}$

Number of k-dim subspaces containing $e: \begin{bmatrix} n-1\\ k-1 \end{bmatrix}_q$

Number of k-dim subspaces not containing e: $\binom{n}{k}_{q} - \binom{n-1}{k-1}_{q} = q^{k} \binom{n-1}{k}_{q}$

 \implies k-dim space in E/e has q^k pre-images in E not containing e

$$\sum_{k=0}^{n-1} q^k |\{I : I \in \mathcal{I}(M-e), \dim I = k\}| + |\mathcal{I}(M/e)| = |\mathcal{I}(M)|$$

Overview

- q-Analogues attract attention nowadays because of network coding.
- ► We should study *q*-matroids for the same reasons we study matroids: they generalize several discrete structures.
- Deletion and contraction for *q*-matroids is defined.
- Counting on deletion and contraction in *q*-matroids gives extra factors *q^k*. This needs better notation.
- ► To do: deletion and contraction for the *q*-rank generating function and *q*-Tutte polynomial.
- ► To do: link with puncturing/shortening in rank metric codes, derived/residual *q*-design.

Thank you for your attention.