A combinatorial view on derived codes

Relinde Jurrius (joint work with Philippe Cara)

Vrije Universiteit Brussel, Belgium

→ University of Neuchâtel, Switzerland

Finite Geometries September 16, 2014

Codes and lattices

Linear code k-dim subspace of $GF(q)^n$ Arrangement of hyperplanes n-tuple of hyperplanes in $GF(q)^k$ Projective system n-tuple of points in PG(k-1,q).

- One-to-one correspondence between equivalence classes.
- Independent of choice of generator matrix, so notation: A_C or P_C .

Codes and lattices

Lattice: poset with *join* (smallest upper boud), $x \lor y$ and *meet* (greatest lower bound) $x \land y$

Geometric lattice:

- atomic: every element is join of rank-1 elements (atoms)
- semimodular: rank function with $r(x \lor y) + r(x \land y) \le r(x) + r(y)$
- no infinite chains

Codes and lattices

Projective system: atoms = points, elements = spans

 $\label{eq:hyperplane} \mbox{Hyperplanes arrangement: atoms} = \mbox{hyperplanes, elements} = \mbox{intersections}$

Example

$$\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right)$$

- Start with [n, k] code.
- Consider the projective system $\mathcal{P}_{\mathcal{C}}$.
- Look at all hyperplanes spanned by k-1 points of $\mathcal{P}_{\mathcal{C}}$. (Ignore k-1 points that span spaces of lower dimension.)
- Remove (multiple) copies of hyperplanes.
- These hyperplanes form an arrangement A.
- The derived code D(C) is the code such that $A = A_{D(C)}$.

Example

$$\left(\begin{array}{ccccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{array}\right) \quad \rightarrow \quad \left(\begin{array}{ccccccc} 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & -1 & 1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0 & 1 & 0 \end{array}\right)$$

C

Motivation

The derived code was introduced in the study of the *coset leader* and *list weight enumerator*.

The coset leader weight enumerator is interesting because:

- Determines the probability of correct decoding in coset leader decoding.
- Determines the average of changed symbols in steganography (information hiding).

The list weight enumerator is interesting because:

- Determines the size of lists in list decoding.
- Determines the probability of correct decoding in list decoding.

From a lattice point of view, this is how we make a derived code:

- Start with [n, k] code.
- Consider the geometric lattice \mathcal{L} of $\mathcal{P}_{\mathcal{C}}$.
- Turn it upside down: \mathcal{L}^{op} .
- Add extra elements above atom level such that
 - $\mathcal{L}^{op} \hookrightarrow \mathcal{L}(D(C))$ in the "right" way;
 - $\mathcal{L}(D(C))$ is a geometric lattice.

Example

Example

Example

Codes with equal geometric lattices may have different derived codes!

Results

We answered two open questions:

- When is $C \cong D(C)$?
- Can we define a *derived lattice*, by taking the derived arrangement "as general as possible"?

When is $C \cong D(C)$?

We need: $\mathcal{L}(C) = \mathcal{L}(C)^{op} = \mathcal{L}(D(C))$ and \mathcal{L}^{op} is a geometric lattice.

Theorem

The following are equivalent:

- $C \cong D(C)$
- $r(x \vee y) + r(x \wedge y) = r(x) + r(y)$
- \mathcal{P}_C contains all points of some PG(k-1,q)
- C is the q-ary simplex code

Derived lattice

How to create the *derived lattice* $D(\mathcal{L})$:

- ullet Start with a geometric lattice \mathcal{L} .
- The atoms of $D(\mathcal{L})$ are the co-atoms of \mathcal{L} .
- For all subsets I of atoms:
 - If $r(\mathcal{L}) r(\bigwedge I) \leq |I|$ in \mathcal{L} , then $\bigvee I = (\bigwedge I)^{op}$ in $D(\mathcal{L})$.
 - If $r(\mathcal{L}) r(\bigwedge I) > |I|$ in \mathcal{L} , then $\bigvee I$ is a new element in $D(\mathcal{L})$ with $r^*(\bigvee I) = |I|$.
- Partial ordering: $\bigvee I \leq \bigvee J$ iff $I \subseteq J$.

Rank function: $r^*(\bigvee I) = \min\{r(\mathcal{L}) - r(\bigwedge I), |I|\}$

Derived lattice

Example

$$I = \{1, 2\}$$

$$3 - r(a) = 3 - 1 = 2$$

$$2 \le 2$$

$$ightarrow$$
 no new element

$$I = \{1, 6\}$$

3 - $r(0) = 3 - 0 = 3$
3 > 2

 \rightarrow new element

$$I = \{1, 5, 6\}$$

$$3 - r(0) = 3 - 0 = 3$$

$$3 \le 3$$

ightarrow no new element

Derived lattice

Steps of the proof:

- $D(\mathcal{L})$ is a lattice
- ullet $\mathcal{L}^{op}\hookrightarrow \mathcal{D}(\mathcal{L})$ in the "right" way
- $D(\mathcal{L})$ is a geometric lattice

Difficult part: semimodularity $r^*(x \lor y) + r^*(x \land y) \le r^*(x) + r^*(y)$

Thank you for your attention.