A q-analogue of perfect matroid designs

Relinde Jurrius

Université de Neuchâtel, Switzerland

Finite fields and applications (Fq13) June 8, 2017 Matroid: a pair (E, r) with

- ► *E* finite set;
- ▶ $r: 2^E \to \mathbb{N}_0$ a function, the *rank function*, with for all $A, B \in E$: (r1) $0 \le r(A) \le |A|$ (r2) If $A \subseteq B$ then $r(A) \le r(B)$. (r3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ (semimodular)

Examples:

- Set of vectors; rank = matrix rank
 In particular: columns of generator matrix of linear code
- ► Set of edges of a graph; rank = size of spanning tree

A subset $F \subseteq E$ is a flat if $r(F \cup \{x\}) > r(F)$ for any $x \notin F$.

The closure of a subset $A \subseteq E$ is the smallest flat that contains A.

Flats are equal to their closure: *closed sets*.

A matroid is also a pair (E, \mathcal{F}) with

E finite set;

F ⊆ 2^E a collection of subsets, the *flats*, with: (F1) E ∈ F (F2) If F₁, F₂ ∈ F then F₁ ∩ F₂ ∈ F. (F3) If F ∈ F, then every x ∉ F is in a unique flat covering F.

Theorem (Birkhoff, 1935)

The poset of flats of a matroid is a co-atomic lattice.

A perfect matroid design is a matroid such that all flats of the same rank have the same size.

Example

- (Truncations of) projective spaces;
- (Truncations of) affine spaces;
- Steiner systems;
- Rank 4 PMDs coming from Moufang loops.

Theorem (Murty, Young & Edmonds, 1970) The independent sets / circuits / flats of size j form a design. *q*-analogue: finite set \longrightarrow finite vector space over \mathbb{F}_q

Example

 $\binom{n}{k}$ = number of sets of size k contained in set of size n

 $\begin{bmatrix} n \\ k \end{bmatrix} = \text{number of } k \text{-dim subspaces of } n \text{-dim vector space over } \mathbb{F}_q$

$$= \prod_{i=0}^{k-1} \frac{q^n - q^i}{q^k - q^i}$$

Example

- t- (v, k, λ) design: pair (X, \mathcal{B}) with
 - ► X set with v elements (points)
 - ▶ B family of subsets of X of size k (blocks)
 - Every *t*-tuple of points is contained in exactly λ blocks
- t-($v, k, \lambda; q$) subspace design: pair (X, B) with
 - X v-dim vectorspace over \mathbb{F}_q
 - \mathcal{B} family of k-dim subspaces of X (blocks)
 - Every *t*-dim subspace is contained in exactly λ blocks

If $\lambda = 1$ we call the (subspace) design a (q-)Steiner system

finite set	finite space \mathbb{F}_q^n
element	1-dim subspace
size	dimension
п	$rac{q^n-1}{q-1}$
intersection	intersection
union	sum
complement	(it depends)

From q-analogue to 'normal': let $q \rightarrow 1$.

q-Matroid: a pair (E, r) with

- ► *E* finite dimensional vector space;
- ▶ $r : { subspaces of E } \rightarrow \mathbb{N}_0$ a function, the *rank function*, with for all $A, B \subseteq E$:

(r1)
$$0 \leq r(A) \leq \dim A$$

(r2) If
$$A \subseteq B$$
 then $r(A) \leq r(B)$.

(r3)
$$r(A+B) + r(A \cap B) \le r(A) + r(B)$$
 (semimodular)

Theorem (J. & Pellikaan, 2016)

Every \mathbb{F}_{q^m} -linear rank metric code gives a q-matroid.

Proof.

Let $E = \mathbb{F}_q^n$ and G be a generator matrix of the code. Let $A \subseteq E$ and Y a matrix whose columns span A.

Then r(A) = rk(GY) satisfies the axioms (r1), (r2), (r3).

A q-matroid is also a pair (E, \mathcal{F}) with

- ► *E* finite set;
- \mathcal{F} a collection of subspaces, the *flats*, with:

Theorem (Crapo, 1964)

The poset of flats of a q-matroid is a co-atomic lattice.

A q-PMD is a q-matroid such that all flats of the same rank have the same dimension.

Lemma *q-Steiner systems are q-PMDs.*

Fact: finding q-Steiner systems is hard. Maybe q-matroids help?

Conjecture (J. & Torielli, 2017) All *q*-matroids come from rank metric codes.

That means: a *q*-matroid over $E = \mathbb{F}_q^n$ of rank *k* can be represented by a $k \times n$ matrix over a suitably large extension field \mathbb{F}_{q^m} . To do list:

- Fix details.
- ► Do *q*-PMDs give us subspace designs?
- ► Do other results on PMDs have a *q*-analogue? (Deza, 1992)
- ► Residual/derived design vs deletion/contraction in *q*-matroid.
- Relation between the representation matrix and the automorphisms of a design?
- ▶ Find a representation of the $S_2(2,3,13)$ *q*-Steiner system.
- Wishful thinking: what about the q-analogue of the Fano plane ...?

Help is welcome!