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g-Analogues

Finite set — finite dimensional vectorspace over I

Example
<Z> = number of sets of size k contained in set of size n
n
[k] = number of k-dim subspaces of n-dim vectorspace over I
q
_ k—1 qn . q,‘
qk _ ql

i=0



g-Analogues

finite set finite space Fg
element 1-dim subspace
size dimension
n ‘Z::ll
intersection intersection
union sum
complement it depends

From g-analogue to ‘normal’: let ¢ — 1.



Candidates for complement A of A C Fg:

» All vectors outside A
But: not a space

» Orthogonal complement

But: AN AL can be nontrivial
» Quotient space Fg/A

But: changes ambient space

» Subspace such that A® A° =g
But: not unique



Matroid: a pair (E,Z) with
» E finite set;

» 7 C2F family of subsets of E, the independent sets, with:
() 0ez
(I2) If AeZ and B C Athen B € T.
(13) If A,B € T and |A| > |B| then there is an a € A\ B such that

Bu{a} eT.
Examples:

» Set of vectors; independence = linear independence

» Set of edges of a graph; independence = cycle free



Example

0 00 11
01100
1 1 010
Example
b
d d c

e

But: most matroids don't come from a matrix or graph.



A matroid is also a pair (E, r) with
» E finite set;

» r:2F s Ny a function, the rank function, with for all
A, B € E:
(r1) 0 < r(A) <A
(r2) If AC B then r(A) < r(B).
(r3) r(AUB)+ r(AN B) < r(A) + r(B) (semimodular)

r(A) = size of largest independent set contained in A

7 = {subsets whose size is equal to their rank}



Example

00011
01100
11010

(

Example




Basis: maximal independent set wrt inclusion

All bases have the same size.
Loop: element that is in no independent set (i.e., r(x) =0)
Rank of M: rank of the ground set E

Representable: matroid that comes form a matrix



g-Matroid: a pair (E, r) with
» E finite dimensional vector space;

» r: {subspaces of E} — Ny a function, the rank function, with
forall A,B C E:
(r1) 0 <r(A) <dimA
(r2) If AC B then r(A) < r(B).
(r3) r(A+ B)+r(AnB) < r(A) + r(B) (semimodular)



Theorem (J. & Pellikaan, 2016)
Every Fym-linear rank metric code gives a q-matroid.

Proof.

Let E =Fg and G be a generator matrix of the code.
Let AC E and Y a matrix whose columns span A.

G Y GY

Then r(A) = rk(GY') satisfies the axioms (r1),(r2),(r3).



Lemma
Matrix representation is equivalent under

» row operations over [Fgm;

» column operations over .

We call a g-matroid that comes from a code representable.



Conjecture (J. & Torielli, 2017)

All g-matroids are representable.

That means: a g-matroid over E = [Fg of rank k can be represented
by a k x n matrix over a suitably large extension field Fgm.

Motivating evidence:
» uniform matroids are representable;

» the matrix has entries in an extension field.



A g-matroid could also be a pair (E,Z) with
» E finite dimensional vector space;

» 7 family of subspaces of E, the independent spaces, with:
(1) 0.
(I2) f JeZand | C J, then | € T.
(13) If I,J € Z with dim | < dim J, then there is some
1-dimensional subspace x C J, x Z | with [ +x € Z.

r(A) = dimension of largest independent space contained in A

7 = {subspaces whose dimension is equal to their rank}



Example
1 001

Let E=F5and Z = {< 0110 > and all its subspaces}.

7 satisfies (11),(12),(13), and r satisfies (r1),(r2). But:

1 000 0100
A:<0100> B:<0010>
0 01O 0 0 01

Then (A+B)+r(ANB)=2+1>1+1=r(A)+r(B)!



Problem: (r1),(r2),(r3) = (11),(12),(13); but not <.

Solution: find an extra axiom (14) for Z

Lemma
Loops come in subspaces.

Corollary

If an axiom set is invariant under embedding E in a bigger space,
it can not be a full axiom set for T.



Theorem
A g-matroid is a pair (E,T) with
» E finite dimensional vector space;
» 7 family of subspaces of E, the independent spaces, with:

(11) Z#£0.

(I12) IfJeZ and | C J, then | € T.

(13) IfI,J € T with dim | < dim J, then there is some
1-dimensional subspace x C J, x £ | with | +x € T.

(14) Let A,B C E and let |, J be maximal independent subspaces
of A and B, respectively. Then there is a maximal independent
subspace of A+ B that is contained in | + J.



Theorem
A g-matroid is a pair (E,B) with
» E finite dimensional vector space;
» B family of subspaces of E, the bases, with:
(Bl) B#£D
(B2) If By,B, € B and By C B,, then By = B;.
(B3) If By, By € B, then for every codimension 1 subspace A of By
with By N B, C A there is a 1-dimensional subspace y of B,
with A+y € B.
(B4) Let A,B C E and let |,J be maximal intersections of some
bases with A and B, respectively. Then there is a maximal
intersection of a basis and A + B that is contained in | + J.



Duality

Let r*(A) = dim A — r(M) + r(At).

Theorem
M* = (E, r*) is a g-matroid, i.e., r* satisfies (r1),(r2),(r3).

Lemma
B(M*) are the orthogonal complements of bases of M.



Restriction

Let H a hyperplane in E and let ry,(A) = rm(A).

Theorem
M|y = (H, rm,,) is a g-matroid, i.e., ry,,, satisfies (r1),(r2),(r3).

Lemma
Z(M|y) are the independent spaces of M that are contained in H.



Contraction

Let e 1-dim subspace of E,
7 : E — E/e projection,
Ain E/e and B in E such that e C B and 7(B) = A.

Let ry/e(A) = rm(B) — 1.

Theorem
M/e = (E/e, rmye) is a g-matroid, i.e., ry e satisfies (r1),(r2),(r3).

Lemma
Z(M/e) are the independent spaces of M that contain e, projected
to E/e.



Restriction, contraction, and duality

Theorem

Restriction and contraction are dual operations:
(M/e)* = M*’el and (M’el)* = M*/e.



Example
{a7 b? C’ d}

AN

{a,b,cH{a, b,d{a,c,d{b,c,d}

AT IS

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}



Matriod <= only the following diamonds:

one zero mixed prime

g-analogue: change Boolean lattice to subspace lattice
(or another complemented modular lattice)



AL, A,
AV

A A
Nas



Example




Example




Rank generating polynomial:
Z " dlm(A) r(A)
ACE

Tutte polynomial:

classica: x = x—1, y >y —1

g: something similar but with powers of g 77



Original Tutte polynomial:

Tlx,y) = 3 x0)ye(e)
BeB

Internal /external activity uses ordering on elements of the matroid.

Ordering on 1-dimensional subspaces 77



Internal /external activity induces partition of lattice in prime-free
minors; that gives the Tutte polynomial.

classical: every part contains a basis

q: several bases per part, what is the right partition?

So the g-Tutte polynomial is a sum over parts of the partition:
exponents of x and y depend on rank/nullity of the parts.



Example

T/

100

/

011

111

001

101

=

T(x,y) = x> 4+ xy + 3x




What's next?

Work in progress:
» g-analogue of Tutte polynomial
» Link with rank weight enumerator

» Do all g-matroids come from rank metric codes? How?

Long term:
» More cryptomorphic descriptions (circuits, flats, closure, .. .)
» Rank metric codes that are not Fgm-linear
» Puncturing and shortening of rank metric codes vs. restriction
and contraction of g-matroids?
» Link with other g-analogues?



